
Algebraic Numbers

and Fourier Analysis

RAPHAEL SALEM
Professor of Mathematics
Faculty of Sciences, University ofParis

D. C. HEATH AND COMPANY BOSTON



Library of Congress Catalog Card Number: 63-19065

Copyright © 1963 by D. C. HEATH AND COMPANY

No part of the material covered by this copyright may be reproduced in
any form without written permission of the publisher. (6 G 3)

PRINTED IN THE UNITED STATES OF AMERICA



To the memory of my father -

to the memory of my nephew, Emmanuel Amar,

who died in 1944 in a concentration camp-

to my w({e and my children, to whom

I owe so much -

this book is dedicated





PREFACE

THIS SMALL BOOK contains, with but a few developments, the substance of the
lectures I gave in the fall of 1960 at Brandeis University at the invitation of its
Department of Mathematics.

Although some of the material contained in this book appears in the latest
edition of Zygmund's treatise, the subject matter covered here has never until
now been presented as a whole, and part of it has, in fact, appeared only in origi­
nal memoirs. This, together with the presentation of a number of problems which
remain unsolved, seems to justify a publication which, I hope, may be of some
value to research students. In order to facilitate the reading of the book, I have
included in an Appendix the definitions and the results (though elementary)
borrowed from algebra and from number theory.

I wish to express my thanks to Dr. Abram L. Sachar, President of Brandeis
University, and to the Department of Mathematics of the University for the in­
vitation which allowed me to present this subject before a learned audience, as
well as to Professor D. V. Widder, who has kindly suggested that I release my
manuscript for publication in the series of Heath Mathematical Monographs.
I am very grateful to Professor A. Zygmund and Professor J.-P. Kahane for
having read carefully the manuscript, and for having made very useful sugges­
tions.

R. Salem
Paris, 1 November 1961

Professor Raphael Salem died suddenly in Paris on the twen­
tieth ofJune, 1963, a few days after seeing final proof of his work.



1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



CONTENTS

Chapter I. A REMARKABLE SET OF ALGEBRAIC INTEGERS

1. Introduction 1

2. The algebraic integers of the class S 2

3. Characterization of the numbers of the class S 4

4. An unsolved problem 11

1

Chapter Il. A PROPERTY OF THE SET OF NUMBERS OF THE CLASS S 13

1. The closure of the set of numbers belonging to S 13

2. Another proof of the closure of the set of numbers belonging to the

class S 16

Chapter Ill. APPLICATIONS TO THE THEORY OF POWER SERIES;
ANOTHER CLASS OF ALGEBRAIC INTEGERS 22

1. A generalization of the preceding results 22

2. Schlicht power series with integral coefficients 25

3. A class of power series with integral coefficients; the class T of alge­
braic integers and their characterization 25

4. Properties of the numbers of the class T 30

5. Arithmetical properties of the numbers of the class T 32

Chapter IV. A CLASS OF SINGULAR FUNCTIONS; BEHAVIOR OF THEIR
FOURIER-STIELTJES TRANSFORMS AT INFINITY 36

1. Introduction 36

2. The problem of the behavior at infinity 38



Chapter V. THE UNIQUENESS OF THE EXPANSION IN TRIGONOMETRIC
SERIES; GENERAL PRINCIPLES 42

1. Fundamental definitions and results 42

2. Sets of multiplicity 44

3. Construction of sets of uniqueness 47

Chapter VI. SYMMETRICAL PERFECT SETS WITH CONSTANT RATIO
OF DISSECTION; THEIR CLASSIFICATION INTO M-SETS
AND U-SETS 53

Chapter VII. THE CASE OF GENERAL "HOMOGENEOUS" SETS 57

1. Homogeneous sets 57

2. Necessary conditions for the homogeneous set E to be a U-set 57

3. Sufficiency of the conditions 59

Some Unsolved Problems 62

Appendix 64

Bibliography 67

Index 68



ALGEBRAIC NUMBERS AND FOURIER ANALYSIS





Chapter I

A REMARKABLE SET OF ALGEBRAIC INTEGERS

1. Introduction

We shall first recall some notation. Given any real number a, we shall denote
by [aJ its integral part, that is, the integer such that

[aJ < a < [aJ + 1.

By (a) we shall denote the fractional part of a; that is,

[aJ + (a) = a.

We shall denote by 11 a 11 the absolute value of the difference between a and the
nearest integer. Thus,

11 a 11 = min I a - n I, n = 0, ± I, ± 2, ....

If m is the integer nearest to a, we shall also write

a=m+{a}

so that 11 a 11 is the absolute value of {a}.
Next we consider a sequence of numbers t Ul, U2, ••., Un' ••• such that

°< Uj < I.

Let A be an interval contained in (0, 1), and let IA I be its length. Suppose
that among the first N members of the sequence there are v(A, N) numbers in
the interval A. Then if for any fixed A we have

lim v(ANN) = IA /,
N-HO

we say that the sequence {Un} is uniformly distributed. This means, roughly
speaking, that each subinterval of (0, 1) contains its proper quota of points.

We shall now extend this definition to the case where the numbers Uj do not
fall between °and I. For these we consider the fractional parts, (Uj) , of Uj,

and we say that the sequence {Un} is uniformly distributed modulo 1 if the se­
quence of the fractional parts, (Ui), (U2), •.., (Un), .•., is uniformly distributed as
defined above.

The notion of uniform distribution (which can be extended to several di­
mensions) is due to H. Weyl, who in a paper [16J, t by now classical, has also
given a very useful criterion for determining whether a sequence is uniformly
distributed modulo 1 (cf. Appendix, 7).

t By "number" we shall mean "real number" unless otherwise stated.
t See the Bibliography on page 67.
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Without further investigation, we shall recall the following facts (see, for
example, [2J).

1. If ~ is an irrational number, the sequence of the fractional parts
(n~), n = 1, 2, ..., is uniformly distributed. (This is obviously untrue for
~ rational.)

2. Let P(x) = akxk + ... + ao be a polynomial where at least one coefficient
aj, with j > 0, is irrational. Then the sequence pen), n = 1, 2, ..., is uni­
formly distributed modul0 1.

The preceding results give us some information about the uniform distribution
modulo 1 of numbersf(n), n = 1, 2, ..., whenf(x) increases to 00 with x not
faster than a polynomial.

We also have some information on the behavior - from the viewpoint of
uniform distribution - of functions fen) which increase to 00 slower than n.
We know, for instance, that the sequence ana (a > 0, 0 < a < 1) is uniformly
distributed modulo 1. The same is true for the sequence a loga n if a > 1, but
untrue if a < 1.

However, almost nothing is known when the growth of fen) is exponential.
Koksma [7J has proved that wn is uniformly distributed modulo 1 for almost
all (in the Lebesgue sense) numbers w > 1, but nothing is known for particular
values of w. Thus, we do not know whether sequences as simple as en or Ci)n
are or are not uniformly distributed modulo 1. We do not even know whether
they are everywhere dense (modulo 1) on the interval (0, 1).

It is natural, then, to turn in the other direction and try to study the numbers
w > 1 such that wn is "badly" distributed. Besides the case where w is a rational
integer (in which case for all n, wn is obviously congruent to 0 modulo 1), there
are less trivial examples of distributions which are as far as possible from being
uniform. Take, for example, the quadratic algebraic integer t

w = !(l + VS) with conjugate !(l- vS) = w'.

Here wn+ w'n is a rational integer; that is,

wn+ w'n =0 (mod 1).

But Iw' I < 1, and so w'n~ 0 as n~ 00, which means that wn~ 0 (modulo 1).
In other words, the sequence wn has (modulo 1) a single limit point, which is o.
This is a property shared by some other algebraic integers, as we shall see.

2. The algebraic integers of the class S

DEFINITION. Let 0 be an algebraic integer such that all its conjugates (not 0
itself) have moduli strictly less than 1. Then we shall say that 0 belongs to the
class S.t
t For the convenience of the reader, some classical notions on algebraic integers are given
in the Appendix.
t We shall always suppose (without loss of generality) that (J > O. (J is necessarily real. Al­
though every natural integer belongs properly to S, it is convenient, to simplify many state­
ments, to exclude the number 1 from S. Thus, in the definition we can always assume () > 1.
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Then we have the following.

THEOREM 1. If 0 belongs to the class S, then On tends to 0 (modulo I) as n~ 00.

PROOF. Suppose that 0 is of degree k and let ah a2, •••, ak-l be its conjugates.
The number On + aln+ ... + ak_ln is a rational integer. Since Iaj I < 1 for
all j, we have, denoting by p the greatest of the Iaj I, j = I, 2, ..., k - I,

Ia1 In + ... + Iak-1 In < (k - I)pn, p < I,

and thus, since On + a1n+ ... + ak_ln = 0 (mod 1),

we see that (modulo 1) On~ 0, and even that it tends to zero in the same way
as the general term of a convergent geometric progression.

With the notation of section I, we write " On 11 ~ O.

Remark. The preceding result can be extended in the following way. Let
'A be any algebraic integer of the field of 0, and let 11-1, 11-2, •.., I1-k-1 be its conju­
gates. Then

'AOn+ 11-1a1n + ... + I1-k-la k_ln

is again a rational integer, and thus 11 AOn 11 also tends to zero as n~ 00, as can
be shown by an argument identical to the preceding one. Further generalizations
are possible to other numbers 'A.

Up to now, we have not constructed any number of the class S except the
quadratic number to + VS). (Of course, all rational integers belong trivially
to S.) It will be of interest, therefore, to prove the following result [IOJ.

THEOREM 2. In every real algebraic field, there exist numbers of the class S. t

PROOF. Denote by Wl, W2, ..., Wk a basis t for the integers of the field, and
I (i) (i) (i)f '-12 k-Ib h b .et W1 , W2 , ••• , Wk or I - , , •••, e t e num ers conjugate to
Wh W2, ..., Wk. By Minkowski's theorem on linear forms [5J (cf. Appendix, 9),
we can determine rational integers Xl, X2, .•., Xk, not all zero, such that

I X1W1 + ... + XkWk I < A

IX1Wl(i) + .. '+XkWk(i) I <p < 1 (i= 1,2, ..., k-I)

provided Apk-l > vTDl,
D being the discriminant of the field. For A large enough, this is always possible,
and thus the integer of the field

o= XIW1 + .. + XkWk

belongs to the class S.

t We shall prove, more exactly, that there exist numbers of S having the degree of the field.

t The notion of "basis" of the integers of the field is not absolutely necessary for this proof,
since we can take instead of Wt, •• " Wk the numbers 1, a, ..., a h - 1, where a is any integer of
the field having the degree of the field.
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3. Characterization of the numbers of the class S

The fundamental property of the numbers of the class S raises the following
question.

Suppose that 0 > 1 is a number such that liOn 11 ~ 0 as n~ 00 (or, more
generally, that 0 is such that there exists a real number A such that 11 "AOn

11 ~ 0
as n~ 00). Can we assert that 0 is an algebraic integer belonging to the class S?

This important problem is still unsolved. But it can be answered positively
if one of the two following conditions is satisfied in addition:

1. The sequence 11 "AOn 11 tends to zero rapidly enough to make the series
L: 11 "AOn

11
2 convergent.

2. We know beforehand that 0 is algebraic.

In other words, we have the two following theorems.

THEOREM A. If 0 > 1 is such that there exists a "A with

L: 11 "AOn
11

2 < 00,

then 0 is an algebraic integer of the class S, and "A is an algebraic number of the
field of O.

THEOREM B. If 0 > 1 is an algebraic number such that there exists a real
number "A with the property 11 "AOn 11 ~ 0 as n~ 00, then 0 is an algebraic integer
of the class S, and "A is algebraic and belongs to the field of O.

The proof of Theorem A is based on several lemmas.

'" LEMMA I. A necessary and sufficient condition for the power series

(1)

to represent a rational function,

P(z)
Q(z)

(P and Q polynomials), is that its coefficients satisfy a recurrence relation,

valid for all m > mo, the integer p and the coefficients ao, ab ..., a p being inde­
pendent of m.

LEMMA 11 (Fatou's lemma). If in the series (1) the coefficients Cn are rational
integers and if the series represents a rational [unction, then

fez) = P(z) ,
Q(z)

where f/Q is irreducible, P and Q are polynomials with rational integral co­
efficients, and QCO) = 1.
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LEMMA III (Kronecker). The series (1) represents a rational function if and
only if the determinants

• •• Cm

• •• Cm+l

cm Cm+l ••• C2m

are all zero for m > ml.

LEMMA IV (Hadamard). Let the determinant

D=

have real or complex elements. Then

We shall not prove here Lemma I, the proof of which is classical and almost
immediate [3J, nor Lemma IV, which can be found in all treatises on calculus
[4J. We shall use Lemma IV only in the case where the elements of D are real;
the proof in that case is much easier. For the convenience of the reader, we
shall give the proofs of Lemma 11 and Lemma Ill.

PROOF of Lemma 11. We start with a definition: A formal power series

with rational integral coefficients will be said to be primitive if no rational integer
d > 1 exists which divides all coefficients.

Let us now show that if two series,

are both primitive, their formal product,
00 n

~ cnzn , Cn = ~ apbn_ p,
o p=o

is also primitive. Suppose that the prime rational integer p divides all the Cn'

Since p cannot divide all the an, suppose that

(mod p), ak ~ 0 (mod p).
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We should then have

Ck = Qkbo (mod p), whence b a = 0 (mod p),
Ck+I = QkbI (mod p), whence b I = 0 (mod p),
Ck+2 =Qkb 2 (mod p), whence b 2 =0 (mod p),

and so on, and thus

would not be primitive.
We now proceed to prove our lemma. Suppose that the coefficients Cn are

rational integers, and that the series

represents a rational function

which we assume to be irreducible. As the polynomial Q(z) IS wholly de­
termined (except for a constant factor), the equations

determine completely the coefficients qi (except for a constant factor). Since
the CB are rational, there is a solution with all qj rational integers, and it follows
that the Pi are also rational integers.

We shall now prove that qo = ± 1. One can assume that no integer
d> 1 divides all Pi and all qj. (Without loss of generality, we may suppose
that there is no common divisor to all coefficients Cn; i.e., L cnzn is primitive.)
The polynomial Q is primitive, for otherwise if d divided qj for allj, we should
have

and d would divide all Pj, contrary to our hypothesis.
Now let U and V be polynomials with integral rational coefficients such that

PU+ QV= m ~ 0,

m being an integer. Then

m=Q(Uf+ V).

Since Q is primitive, Uf+ V cannot be primitive, for m is not primitive unless
Im I = 1. Hence, the coefficients of Uf+ V are divisible by m. If 1'0 is the
constant term of Uf+ V, we have

m = qo'Yo,

and, thus, since m divides 1'0, one has qo = ± 1, which proves Lemma 11.
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PROOF of Lemma Ill. The recurrence relation of Lemma I,

(2)

for all m > mo, the integer p and the coefficients an, ..., a p being independent
of m, shows that in the determinant

Co

~m = Cl

••• Cm

• .. Cm+l

Cm Cm+l •.• C2m

where m > mo +p, the columns of order mo, mo + 1, ..., mo +p are dependent;
hence, ~m = 0.

We must now show that if ~m = °for m > mb then the Cn satisfy a recurrence
relation of the type (2); if this is so, Lemma III follows from Lemma I. Let
p be the first value of m for which ~m = 0. Then the last column of ~p is a
linear combination of the first p columns; that is:

Lj+p = aOCj + alCj+l + ... + ap-lCj+~l + Cj+p = 0, j = 0, 1, ..., p.

We shall now show that Lj+p = °for all values ofj. Suppose that

Lj+p = 0, j = 0, 1, 2, ..., m-I, (m > p).

If we can prove that Lm+p = 0, we shall have proved our assertion by recurrence.
Now let us write

l Cp Cm

~~l! :
I
I •, .
I

~m = Cp

Cm

,.Cp+m ,
;",;' .

.."""
,-

c~ C2m

and let us add to every column of order > p a linear combination with co­
efficients ao, al, ..., ap-l of the p preceding columns. Hence,

i Lp Lm
~~l i :

I, .
I
I • •________ 1 _

~m= Cp

Cm

and since the terms above the diagonal are all zero, we have

~m = (-l)P+m~~l(LP+m)m-p+l.

Since ~m = 0, we have L m+p = 0, which we wanted to show, and Lemma III
follows.
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We can now prove Theorem A.

PROOF of Theorem A [10]. We write

where an is a rational integer and I En I < i; thus I En I = 11 "A(jn 11. Our hypothesis
is, therefore, that the series L: En

2 converges.
The first step will be to prove by application of Lemma III that the series

represents a rational function. Considering the determinant

we shall prove that An = 0 for all n large enough. Writing

we have

'1]m2 < «(j2 + l)(Em_12+ Em
2).

Transforming the columns of An, beginning with the last one, we have

• •• '11n

• •• '11n+l

an '1]n+t ••• '112n

and, by Lemma IV,

where Rh denotes the remainder of the convergent series

But, by the definition of Om,

where C = C("A, (j) depends on "A and (j only.
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Hence,
n

D.n2 < c IT «(J2Rh),

h=l

and since Rh~ 0 for h~ 00, D.n ~ 0 as n~ 00, which proves, since D.n is a
rational integer, that D.n is zero when n is larger than a certain integer.

Hence

~ P(z)..to anzn = Q(z) , (irreducible)

where, by Lemma Ill, P and Q are polynomials with rational integral coefficients
and Q(O) = 1. Writing

we have

00 00

= L: X(Jnzn - L: anZn
o 0

_ X P(z)
- 1 - (Jz 1 + qlZ + ... + qkzk

Since the radius of convergence of

is at least 1, we see that

has only one zero inside the unit circle, that is to say, 1/(J. Besides, since
L: En

2 < 00, f(z) has no pole of modulus 1; thence, Q(z) has one root, I/(J, of
modulus less than 1, all other roots being of modulus strictly larger than 1. The
reciprocal polynomial,

Zk + qlzk-l + ... + qk,

has one root (J with modulus larger than 1, all other roots being strictly interior
to the unit circle Iz I < 1. Thus (J is, as stated, a number of the class S.

Since

X PO/(J)
- -0 = Q'O/(J) '

X is an algebraic number belonging to the field of (J.

t See footnote on page 10.
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PROOF of Theorem B. In this theorem, we again write

AOn = On + En,

On being a rational integer and I En I = 11 AOn
11 <!. The assumption here is

merely that En ~ 0 as n~ 00, without any hypothesis about the rapidity with
which En tends to zero. But here, we assume from the start that 0 is algebraic,
and we wish to prove that 0 belongs to the class S.

Again, the first step will be to prove that the series

represents a rational function. But we shall not need here to make use of
Lemma Ill. Let

Ao+ AIO + ... + AkOk = 0

be the equation with rational integral coefficients which is satisfied by the alge­
braic number O. We have, N being a positive integer,

AON(Ao+ AIO + ... + AkOk) = 0,

and, since

we have

AOQN + AIQN+I + ... + AkQN+k = - (AoEN + AIEN+I + ... + AkEN+k).

Since the A j are fixed numbers, the second member tends to zero as N ~ 00,

and since the first member is a rational integer, it follows that

AOQN + AIQN+I + ... + AkQN+k = 0

for all N > No. This is a recurrence relation satisfied by the coefficients Qn,

and thus, by Lemma I, the series

represents a rational function.
From this point on, the proof follows identically the proof of Theorem A.

(In order to show that fez) has no pole of modulus I, the hypothesis En~ 0 is
sufficient. t) Thus, the statement that 0 belongs to the class S is proved.

00

t A power series fez) =L: cnzn with Cn = 0(1) cannot have a pole on the unit circle. Suppose
o

in fact, without loss of generality, that this pole is at the point z = 1. And let z = r tend to
00

1 - 0 along the real axis. Then Ifez) I ~ L: I en I r n = 0(1 - r)-l, which is impossible if
o

z = 1 is a pole.
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4. An unsolved problem

As we pointed out before stating Theorems A and B, if we know only that
() > 1 is such that there exists a real "A with the condition 11 "A(}n 11 ~ 0 as n~ 00,

we are unable to conclude that () belongs to the class S. We are only able to
draw this conclusion either if we know that L: 11 "A(}n 11 2 < 00 or if we know
that () is algebraic. In other words, the problem that is open is the existence
of transcendental numbers () with the property 11 "A(}n 11 ~ 0 as n~ 00.

We shall prove here the only theorem known to us about the numbers ()
such that there exists a "A with 11 "A(}n 11 ~ 0 as n ~ 00 (without any further
assumption) .

THEOREM. The set of all numbers () having the preceding property is denumer­
able.

PROOF. We again write

where an is an integer and I En I = 11 "A(}n 11. We have

("A(}n - En)("A(}n+2 - En+2) - ("A(}nH - En+l)2
- "A(}n - En '

and an easy calculation shows that, since En ~ 0, the last expression tends to
zero as n~ 00. Hence, for n > no, no = no("A, ()), we have

this shows that the integer an+2 is uniquely determined by the two preceding
integers, an, an+l. Hence, the infinite sequence of integers {an} is determined
uniquely by the first no + 1 terms of the sequence.

This shows that the set of all possible sequences {an} is denumerable, and,
SInce

() 1. an+l= lm-,
an

that the set of all possible numbers () is denumerable. The theorem is thus
proved.

We can finally observe that since

"' l' an1\ = lm-,On

the set of all values of Ais also denumerable.
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EXERCISES

1. Let K be a real algebraic field of degree n. Let (J and (J' be two numbers
of the class S, both of degree n and belonging to K. Then (J(J' is a number of the
class S. In particular, if q is any positive natural integer, (Jq belongs to S if (J does.

2. The result of Theorem A of this chapter can be improved in the sense that
the hypothesis

can be replaced by the weaker one

n

Lj 11 }..(Ji 11 2 = o(n).
j=l

It suffices, in the proof of Theorem A, and with the notations used in this proof,
to remark that

and to show, by an easy calculation, that under the new hypothesis, the second
member tends to zero for n~ 00.



Chapter II

A PROPERTY OF THE SET OF N~ERS
OF THE CLASS S

1. The closure of the set of numbers belonging to S

THEOREM. The set of numbers of the class S is a closed set.

The proof of this theorem [12] is based on the following lemma.

LEMMA. To every number f) of the class S there corresponds a real number 'A
such that 1 < 'A < f) and such that the series

converges with a sum less than an absolute constant (i.e., independent of f) and 'A).

PROOF. Let P(z) be the irreducible polynomial with rational integral co­
efficients having f) as one of its roots (all other roots being thus strictly interior
to the unit circle Iz I < 1), and write

P(z) = Zk + qlzk-l + ... + qk.

Let Q(z) be the reciprocal polynomial

Q(z) = Zkp (~) = 1+ qlZ + ... + qkZk.

We suppose first that P and Q are not identical, which amounts to supposing
that f) is not a quadratic unit. (We shall revert later to this particular case.)

The power series
P(z)
Q(z) = Co + CIZ + ... + cnzn+ ...

has rational integral coefficients (since Q(O) = 1) and its radius of convergence
is f)-I. Let us determine }J- such that

(1)
}J- P(z)

g(z) = 1 - f)z - Q(z)

will be regular in the unit circle. If we set

P(z) = (z - f)PI(z),
Q(z) = (l - f)Z)QI(Z),

then PI and QI are reciprocal polynomials, and we have

= (1 _f)) PI(l/f) .
P. f) QI(l/f)
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Since I~:~;j I= 1 for Iz I = 1, and since ~: is regular for Iz I < 1, we have

and, thus,

(2)

Finally,

1I p. I < () - -0 < ().

ao ao

g(z) = L p.(}nzn - L cnzn
o 0

ao

= L (p.(}n - cn)zn
o

has a radius of convergence larger than 1, since the roots of Q(z) different from
(}-l are all exterior to the unit circle. Hence,

ao 1 /.21TL (p.(}n - Cn)2 = - / g(eifl') /2 dcp.
o 21T' 0

But, by (1) and (2), we have for Iz I = 1

1p.1 IPI (}2-1 1Ig(z) I < () _ 1+ Q < (}«() _ I) + 1 = 2 + 7J < 3.

Hence,

which, of course, gives

(3)
ao

L 11 p.(}n W < 9.
o

Now, by (2) Ip.1 < () and one can assume, by changing, if necessary, the sign of

~, that p. > O. (The case p. = 0, which would imply P (~) = 0, is excluded

for the moment, since we have assumed that () is not a quadratic unit.) We can,
therefore, write 0 < P. < ().

To finish the proof of the lemma, we suppose p. < 1. (Otherwise we can take
A= p. and there is nothing to prove.) There exists an integer s such that

l<II.<_I_
(}s - r- (}s-l

or
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We take A= (JsJJ- and have by (3)

"" ""I: 11 "A()n 11 2 = I: 11 JJ-()n+s 11 2

o 0

Since 1 < A < (J, this last inequality proves the lemma when (J is not a quadratic
unit.

It remains to consider the case when () is a quadratic unit. (This particular
case is not necessary for the proof of the theorem, but we give it for the sake
of completeness.) In this case

()n + ()-n

is a rational integer, and

Thus,

"" "" I ~
~ 11 (In W < ~ ~n = ()2 _ I

and since (J + ~ is at least equal to 3, we have (J > 2 and

()2 4
~-l <:3'

Thus, since I: 11 (In 11 2 < !, the lemma remains true, with A = 1.

Remark. Instead of considering in the lemma the convergence of

""I: 11 "A(Jn W
o

we can consider the convergence (obviously equivalent) of

""I: sin2 1r"A()n.
o

In this case we have

""I: sin2 1r"A(Jn < 91r2•

o



/6 A Property of the Set ofNumbers of the Class S

PROOF of the theorem. Consider a sequence of numbers of the class S,
(Jt, (J2, •••, (Jp, ••• tending to a number w. We have to prove that w belongs to
S also.

Let us associate to every (Jp the corresponding Ap of the lemma such that

(4)
00

1 < Ap < (Jp, L sin2 7rA p(Jpn < 97r2
•

o

Considering, if necessary, a subsequence only of the (Jp, we can assume that the
Ap which are included, for p large enough, between 1 and, say, 2w, tend to a
limit fJ-. Then (4) gives immediately

00

L sin2 7rfJ-Wn < 97r2

o

which, by Theorem A of Chapter I, proves that w belongs to the class S. Hence,
the set of all numbers of S is closed.

It follows that 1 is not a limit point of S. In fact it is immediate that (J E S
implies, for all integers q > 0, that (Jq E S. Hence, if 1+ Em E S, with Em ~ 0,
one would have

(1 + Em) [E:] E S,

abeing any real positive number and [a ] denoting the integral part of a.
Em Em

But, as m~ 00, Em~°and

(1 + Em) [1;;;1 ~ ea.

It would follow that the numbers of S would be everywhere dense, which is
contrary to our theorem.

2. Another proof of the closure of the set of numbers belonging to the class S

This proof, [13J, [11J, is interesting because it may be applicable to different
problems.

Let us first recall a classical definition: If fez) is analytic and regular in the
unit circle I z I < 1, we say that it belongs to the class Hp (p > 0) if the integral

{27r
} 0 If(rei<p) Ip dcp (r < 1)

is bounded for r < 1. (See, e.g., [17J.)
This definition can be extended in the following way. Suppose that fez) is

meromorphic for Iz I < 1, and that it has only a finite number of poles there
(nothing is assumed for Iz I = 1). Let Zt, ••• , Zm, be the poles and denote by
Pj(z) the principal part of fez) in the neighborhood of Zj. Then the function

m

g(z) = fez) - L Pj(z)
j=l

is regular for I z I < 1, and if g(z) E Hp (in the classical sense), we shall say that
fez) E Hp (in the extended sense).
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We can now state Theorem A of Chapter I in the following equivalent form.

THEOREM A'. Let fez) be analytic, regular in the neighborhood of the origin,
and such that its expansion there

has rational integral coefficients. Suppose that fez) is regular for Iz I < 1, ex­
cept for a simple pole 1/0 (0) 1). Then, if fez) E H2, it is a rational function
and 0 belongs to the class S.

The reader will see at once that the two forms of Theorem A are equivalent.
Now, before giving the new proof of the theorem of the closure of S, we shall

prove a lemma.

LEMMA. Let P(z) be the irreducible polynomial having rational integral co­
efficients and having a number 0 E S (or one of its roots. Let

Q(z) = Zkp (~)

be the reciprocal polynomial (k being the degree of P). Let A be such that

A P(z)
1 - Oz - Q(z)

is regular in the neighborhood of 1/0 and, hence, for all I z I < 1. [We have

already seen that I A I < 0 - ~ (and that thus, changing if necessary the sign of

Q, we can take 0 < A < 0 - ~). ] Then, in the opposite direction [1IJ,

1
A> 2(0+ 1)'

provided 0 is not quadratic, and thus P r! Q.

PROOF. We have already seen that

P(z) ao

Q(z) = i= cnz
n
,

the coefficients Cn being rational integers. We now write

We have

(5)

as already stated.
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On the other hand, the integral can be written

I =~ ( { X _ P (z)} {~ _ P (!) }dZ,
21rl JC'-" 1 - Oz Q 1 _ ~ Q z z

z

where the integral is taken along the unit circle, or

1- 2~i fc {, ~ Oz - ~}{z \- z~} dz.
~

But changing z into 1/z, we have

( X Q (X Pdz
J~I-0zzpdz=-J~l_~Qz=

z
J X P---dz

C z- 0 Q
~

Therefore,
1=_1_ ( dz _ 2X2 + _1_ ( }...2 dz

21ri}c z 02 - 1 21ri}c (1 - Oz)(z - 0)
~ ~

[ 1]2X2 X2 Z --0
= 1- +--

02
- 1 ! _ 0 1 - Oz z =i

o
2}...2}...2 X2

= 1- 02-1 + 02-1 = 1- 02-1

and thus (5) gives

(6)

This leads to

I}... I < v02 - 1

or changing, if necessary, the sign of Q, to }... < v02 - 1 (an inequality weaker

than}... < 0 - ~ already obtained in (2».

On the other hand, since X- Co = Eo, we have

IX- Co I = I Eo I < 1.
But

P(O) qk
Co = Q(O) = ± 1 > 1.

Hence X > 0 and Co < }... + 1.
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We shall now prove that

I
A> 2(0 + I)·

In fact, suppose that

then A < ! and necessarily Co = I. But, since

p 00

Q (1 - Oz) = Co +~ (cn - OCn_l)Zn,

we have, if z = ei<p,

2~ 10""1 ~ (I - IJz) I' drp = co' + ~ (cn - IJC~l)"

and since I~ I= 1 for / z I = 1 and the integral is

1+ (f-,

the equality Co = 1 implies

I Cl - 0/ < O.

Hence, since Cl is an integer, Cl > 1.
And thus, since by (6)

A
2 + 2+ 2 I02 _ 1 eo el < ,

we have, with Co = 1, Cl > 1, AO < !-,
A2 A2

(J2 _ 1+ (A - 1)2 + (AO - 1)2 < 02 _ 1+ (A - CO)2 + (AO - CI)2 < I,

02~ 1+ A2(l + (2) - 2A(l + 0) + 1 < 0,

This contradicts

1
A < 2(0+ 1)·

Thus, as stated,
1

A> 2(1 + 0)
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We can now give the new proof of the theorem stating the closure of S.

PROOF. Let w be a limit point of the set S, and suppose first w > 1. Let
{Os} be an infinite sequence of numbers of S, tending to w as s~ 00. Denote
by Ps(z) the irreducible polynomial with rational integral coefficients and having
the root Os and let Ksbe its degree (the coefficient of ZK. being 1). Let

Qs(z) = ZK·ps (~)

be the reciprocal polynomial. The rational function Ps/ Qs is regular for
I z I < 1 except for a single pole at z = Os-I, and its expansion around the origin

P <Xl

_s = L an(s)zn
Qs n=O

has rational integral coefficients.
Determine now "As such that

(7)

will be regular for I z I <1. (We can discard in the sequence {Os} the quadratic
units, for since Os~ w, Ks is necessarily unbounded.)t By the lemma, and
changing, if necessary, the sign of Qs, we have

Therefore, we can extract from the sequence {"As} a subsequence tending to a
limit different from O. (We avoid complicating the notations by assuming that
this subsequence is the original sequence itself.)

On the other hand, if Iz I = 1,

Igs(z) I < ~s~ 'I + 1 < A,

A being a constant independent of s. Since gs(z) is regular, this inequality holds
for I z I < 1.

We can then extract from the sequence {gsCz)}, which forms a normal family,
a subsequence tending to a limit g*(z). (And again we suppose, as we may,
that this subsequence is the original sequence itself.) Then (7) gives

g*(z) = J.1. -lim PIl
•

1 - wz Qs

Since the coefficients an (s) of the expansion of Ps/ Qs are rational integers, their
limits can only be rational integers. Thus the limit of PsiQs satisfies all require­
ments of Theorem A'. (The fact that g*(z) E H2 is a trivial consequence of its

t See Appendix, 5.
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boundedness, since Ig*(z) I <A.) Therefore w is a number of the class S,
since l/w is actually a pole for

1· Ps
lm Qs'

because Jl -:;t. O. (This is essential, and is the reason for proving a lemma to the
effect that the As are bounded below.)

EXERCISE

Let a be a natural positive integer > 2. Then a is a limit point for the num­
bers of the class S. (Considering the equation

zn(z - a) - 1 = 0,

the result for a > 2 is a straightforward application of Rouche's theorem.
With a little care, the argument can be extended to a = 2.)



Chapter III

APPLICATIONS TO THE THEORY OF POWER SERIES;

ANOTHER CLASS OF ALGEBRAIC INTEGERS

1. A generalization of the preceding results

Theorem A' of Chapter 11 can be extended, and thus restated in the following
way.

THEOREM A". Let fez) be analytic, regular in the neighborhood of the origin,
and such that the coefficients of its expansion in this neighborhood,

00

'L anzn
o

are either rational integers or integers of an imaginary quadratic field. Suppose
that fez) is regular for I z I < 1 except for afinite number ofpoles Ij8 i (I 8i I> 1,
i = 1, 2, ..., k). Then if fez) belongs to the class H2 (in the extended sense),
fez) is a rational function, and the 8i are algebraic integers.

The new features of this theorem, when compared with Theorem A', are:

1. We can have several (although afinite number of) poles.

2. The coefficients an need not be rational integers, but can be integers of an
imaginary quadratic field.

Nevertheless, the proof, like that for Theorem A', follows exactly the pattern
of the proof of Theorem A (see [IOJ). Everything depends on showing that a
certain Kronecker determinant is zero when its order is large enough. The
transformation of the determinant is based on the same idea, and the fact that
it is zero is proved by showing that it tends to zero. For this purpose, one uses
the well-known fact [9J that the integers of imaginary quadratic fields share
with the rational integers the property of not having zero as a limit point.

Theorem A" shows, in particular, that if

where the an are rational integers, is regular in the neighborhood of z = 0, has
only a finite number of poles in I z I < 1, and is uniformly bounded in the neigh­
borhood of the circumference I z I = 1, then fez) is a rational function.

This result suggests the following extension.

THEOREM I. Let
00

fez) = L anzn,
o

where the an are rational integers, be regular in the neighborhood of z = 0, and
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suppose that f(z) is regular for! z I < I except for a finite number of poles. Let
a be any imaginary or real number. If there exist two positive numbers, 0, TJ (TJ < 1)
such that If(z) - a I > 0 for 1 - TJ < I z I < 1, then f(z) is a rational function.

PROOF. For the sake of simplicity, we shall assume that there is only one pole,
the proof in this case being typical. We shall also suppose, to begin with, that
a = 0, and we shall revert later to the general case.

Let E be any positive number such that E < TJ. If E is small enough, there
is one pole of f(z) for I z I < I - E, and, say N zeros, N being independent of E.

Consider
1

g(z) = 1+ mzf(z) ,

m being a positive integer, and consider the variation of the argument of mz f(z)
along the circumference Iz I = I-E. We have, denoting this circumference
by r,

~r Arg[mz f(z)] = 27T-[N + 1 - IJ = 21rN.

If now we choose m such that m(1 - TJ)o > 2, we have for I z I = I - E,

Imz f(z) I > m(1 - TJ)o > 2,

and thus we have also

~r Arg[1 + mz f(z) J = 21rN.

But mz f(z) + I has one pole in I z I < I - E; hence it has N + I zeros. Since
E can be taken arbitrarily small, it follows that g(z) has N + I poles for I z I < 1.
But the expansion of g(z) in the neighborhood of the origin,

has rational integral coefficients. And, in the neighborhood of the circum­
ference I z I = I, g(z) is bounded, since

I I + mif I > Imif I - I > m(1 - TJ) 0 - I > 1.

Hence, by Theorem A" g is a rational function, and so is f(z).
If now a ~ 0, let a = A+ Ili; we can obviously suppose A and Il rational,

and thus

p+ qi
a= ,

r

p, q, and r being rational integers. Then

I rf - (p + qi) I > ro,

and we consider f* = rf - (p + qi). Then we apply Theorem A" in the case of
Gaussian integers (integers of K(i)).
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Extensions. The theorem can be extended [I3J (1) to the case of the an being
integers of an imaginary quadratic field, (2) to the case where the number of
poles in Iz I < 1 is infinite (with limit points on Iz I= 1), (3) to the case of the
an being integers after only a certain rank n > no, (4) to the case when z = 0
is itself a pole. The proof with these extensions does not bring any new diffi­
culties or significant changes into the arguments.

A particular case of the theorem can be stated in the following simple way.

Let

be a power series with rational integral coefficients, converging for I z I < 1.
Let S be the set of values taken by f(z) when I z I < 1. If the derived set S' is not
the whole plane, f(z) is a rational function.

In other words iff(z) is not a rational function, it takes in the unit circle values
arbitrarily close to any given number a.

It is interesting to observe that the result would become false if we replace
the whole unit circle by a circular sector. We shall, in fact, construct a power
series with integral coefficients, converging for Iz I < 1, which is not a rational
function, and which is bounded in a certain circular sector of I z I < 1. Con­
sider the series

co zp2
f(z) = :';0 (1 - z)p'

It converges uniformly for I z I < r if r is any number less than 1. In fact

I
Zp2 I rP2

(l-z)p < (l-r)p'

which is the general term of a positive convergent series. Hence,f(z) is analytic
and regular for I z I < 1. It is obvious that its expansion in the unit circle has
integral rational coefficients. The function f(z) cannot be rational, for z = 1
cannot be a pole of f(z) , since (1 - z)'j(z) increases infinitely as z ~ 1 - 0 on
the real axis, no matter how large the integer k. Finally, f(z) is bounded, say,
in the half circle

I z I < 1, <R(z) < O.

For, iLl < I z I < 1, say, then

11 - z I > (1 + f6)! = i,
and thus

co

If(z) I < L: (!)p.
o

The function f(z) is even continuous on the arc I z I = 1, <R(z) < O.
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2. Schlicht power series with integral coefficients [13J

THEOREM 11. Let fez) be analytic and schlicht (simple) inside the unit circle
I z I < 1. Let its expansion in the neighborhood of the origin be

co

fez) = a_Iz-1 + L: anzn.
o

If an integer p exists such that for all n > p the coefficients an are rational integers
(or integers of an imaginary quadratic field), then fez) is a rational function.

PROOF. Suppose first that a-I ~ O. Then the origin is a pole, and since
there can be no other pole for I z I < I, the expansion written above is valid
in all the open disc Iz I < 1. Moreover, the point at infinity being an interior
point for the transformed domain,f(z) is bounded for, say,! < I z I < 1. Hence
the power series

is bounded in the unit circle, and the nature of its coefficients shows that it is a
polynomial, which proves the theorem in this case.

Suppose now that a-I = O. Then fez) mayor may not have a pole inside the
unit circle. The point f(O) = 11o is an interior point for the transformed domain.
Let u = fez). To the circle C, Iu - ao I < 0, in the u-plane there corresponds,
for 0 small enough, a domain D in the z-plane, including the origin, and com­
pletely interior, say, to the circle I z I <!. Now, by Theorem I, if fez) is not ra­
tional, there exists in the ring i < I z I < 1 a point ZI such that If(zl) - ao I < 0/2.
Then UI = f(zl) belongs to the circle C and consequently there exists in the
domain D a point Z2, necessarily distinct from Zl, such that f(z2) = UI = f(zl).
This contradicts the hypothesis that fez) is schlicht. Hence, fez) is a rational
function.

3. A class of power series with integral coefficients [13J; the class T of alge­
braic integers and their characterization

Let fez) be a power series with rational integral coefficients, converging for
I z I < 1 and admitting at least one "exceptional value" in the sense ofTheorem I;
i.e., we assume that Ifez) - a I > 0 > 0 uniformly as I z I~ 1. Then fez) is
rational and it is easy to find its form. For

P(z)
fez) = Q(z) ,

P and Q being polynomials with rational integral coefficients, and by Fatou's
lemma (see Chapter I) Q(O) = 1. The polynomial Q(z) must have no zeros
inside the unit circle (P/Q being irreducible) and, since Q(O) = 1, it means that
all zeros are on the unit circle. By a well-known theorem of Kronecker [9J
these zeros are all roots of unity unless Q(z) is the constant 1.
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Now, suppose that the expansion

with rational integral coefficients, of fez) is valid only in the neighborhood of the
origin, but that fez) has a simple pole liT (/ T I > 1) and no other singularity
for I z I < 1.

Suppose again that there exists at least one exceptional value a such that
Ifez) - a I > 0 > 0 uniformly as I z I~ 1. Then fez) is rational; I.e.,

P
fez) = Q'

P, Q being polynomials with rational integral coefficients, PIQ irreducible,
and Q(O) = 1. The point liT is a simple zero for Q(z) and there are no other
zeros of modulus less than 1. If fez) is bounded on the circumference I z , = 1,
Q(z) has no zeros of modulus 1, all the conjugates of liT lie outside the unit
circle, and T belongs to the class S.

If, on the contrarY,f(z) is unbounded on I z I = 1, Q(z) has zeros of modulus 1.
If all these zeros are roots of unity, Q(z) is divisible by a cyclotomic polynomial,
and again T belongs to the class S. If not, T is an algebraic integer whose
conjugates lie all inside or on the unit circle.

We propose to discuss certain properties of this new class of algebraic integers.

DEFINITION. A number T belongs to the class T if it is an algebraic integer
whose conjugates all lie inside or on the unit circle, assuming that some conjugates
lie actually on the unit circle (for otherwise T would belong to the class S).

Let P(z) = 0 be the irreducible equation determining T. Since there must
be at least one root of modulus 1, and since this root is not ± 1, there must be
two roots, imaginary conjugates, a and l/a on the unit circle. Since pea) = 0
and P(lla) = 0 and P is irreducible, P is a reciprocal polynomial; T is its only
root outside, and liT its only root inside, the unit circle; T is real (we may
always suppose T > 0; hence T > 1). There is an even number of imaginary
roots of modulus 1, and the degree of P is even, at least equal to 4. Finally, T

is a unit. If P(z) is of degree 2k and if we write

1
y = z+-,

z

the equation P(z) = 0 is transformed into an equation of degree k, R(y) = 0,
whose roots are algebraic integers, all real. One of these, namely T + T-1, is
larger than 2, and all others lie between - 2 and +2.

We know that the characteristic property of the numbers () of the class S
is that to each () E S we can associate a real "A ¥= 0 such that L 11 "A()n 11

2 < 00;

i.e., the series L I1 "A()n 11 zn belongs to the class H2. t
t Of course, if eE S, the series is even bounded in I z I < 1. But it is enough that it should belong
to H2 in order that () should belong to S.
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The corresponding theorem for the class T is the following one.

THEOREM Ill. Let T be a real number> 1. A necessary and sufficient condi­
tion for the existence of a real jJ. ~ 0 such that the power series t

should have its real part bounded above (without belonging to the class H2) for
Iz / < 1 is that T should belong to the class T. Then jJ. is algebraic and belongs
to the field of T.

PROOF. The condition is necessary. Let an be the integer nearest to jJ.Tn , so
that jJ.Tn = an + {jJ.Tn }. We have

Now if
T+l
2T</z/<1

we have
11 - TZ I > ·HT - 1).

Hence,
00 00 21 IIL anzn + L {jJ.Tn } zn I < ------!!.-.
o 0 T - 1

Therefore, the real part of

is bounded below in the ring
T+l
2T<l zl<l.

Since this power series has rational integral coefficients and is regular in I z I < 1
except for the pole I/T, it follows, by Theorem I, that it represents a rational
function and, hence, that T is a number, either of the class S or of the class T.
Since fez) is not in H2, T is not in S, and thus belongs to T. The calculation
of residues shows that jJ. is algebraic and belongs to the field of T.

The condition is sufficient. Let T be a number of the class T and let 2k be
its degree. Let

-1 F\J F\J *T ,u.j, u.j

be its conjugates. Let

(j = I, 2, ..., k - 1; aja/ = 1)

so that (J', PI, P2, ..., P"--l are conjugate algebraic integers of degree k.

t See the Introduction (page 1) for the notation {a}. We recall that 11 all = Ila} I.
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The determinant

1 u

Ll = 1 PI

• •• U k - 1

k-l. .. PI

1 P P k-l
ho-l ••• k-l

being not zero, we can, by Minkowski's theorem (as given at the beginning of
Chapter VI and Appendix, 9), find rational integers AI, ... , Ak, such that the
number

o= A1uk - 1 + ... + Ak-IU + A k

has its conjugates (31, .••, (3k-1 all less than 1 in absolute value. In other words,
o is a number of the class S belonging to the field of u. Its conjugates are all
real. Take now

J,L = 02h and l'j = (3lh,

h being a positive integer such that

1'1 + 1'2 + ... + 'Yk-l < j-.

Since u = r + r-1 and r is a unit, J,L is an algebraic integer of the field of r, K(r),
and the numbers

correspond to J,L in the conjugate fields

K(r-1) , K(al), K(al*)' ..., K(ak-I), K(ak-l*)

respectively. It follows that the function

k-I k-I

fi'fz) - J,L + J,L +" 'Yi +" 'Yi
\ - 1 - rz 1 - r-1z ~ 1 - ajZ ~ 1 - a/z

has, in the neighborhood of the origin, an expansion
ClO

L: anzn
o

with rational integral coefficients. The only singularity of fez) for I z I < 1 IS

the pole l/r. We have

ClO ClO k-l k-l

L: (a - J,Lrn)zn = L: a zn - J,L = J,L +~ 'Yi +~ 'Yi .
ono n 1 - rz 1 - r-Iz I 1 - ajZ I 1 - a/z

By well-known properties of linear functions we have for Ia I = I and Iz I < 1

m( 1 »1
l-az - 2

and

(
1 ) rCR ---- >--.

1 - r-1z - r + 1
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Therefore, since "11' > 0, we have for I z I < 1

(R Jt (an - )J.Tn)zn} >~ +'f "11' > ~.10 T+I 1 T+I

On the other hand,

k-l

an = }J.Tn + }J.T-n + I: 'Y1'(af + a/n)
1

and, since I a1'n +a/n I < 2,

l,-l k-l

I I: 'YiCa/ + a/n
) I < 2 I: "11' < i·

1 1

Take now for m the smallest integer such that

}J. I.. [log 4}J.]- < 4-' I.e., m = 1 + 1.
71/i og T

Then, for n > m

Ian - }J.Tn I <!; i.e., an - }J.Tn = - {}J.Tn}.

Therefore, we can write

(R Jmt
l

(an - }J.Tn)Zn - t {}J.Tn} zn} > ~.1 0 m T+I

On the other hand, since for all n

we have for I z I < 1

j
m-l I m m-l 1 m }J.TI: (an - }J.Tn)Zn < - +}J. I: - < - + --,

o 4 0 T n 4 T - 1

whence, finally,

(R JI:
m

OCl

{}J.Tn} zn} < m +~ -~1 4 T-l T+l

= m + 2}J.T .
4 T 2 - 1

Thus

where A is a function of }J. and T only, which proves the second part of our
theorem.
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4. Properties of the numbers of the class T

THEOREM IV. Every number of the class S t is a limit point of numbers of the
class T on both sides [13].

PROOF. Let 0 be a number of the class S, root of the irreducible polynomial

P(z) = zP + CIZp-l + ... + C p

with rational integral coefficients. Let Q(z) be the reciprocal polynomial.
We suppose first that 0 is not a quadratic unit, so that Q and P will not be iden­

tical.
We denote by m a positive integer, and let

Rm(z) = zmp(z) + Q(z).

Then Rm(z) is a reciprocal polynomial whose zeros are algebraic integers.
We denote by e a positive number and consider the equation

(1 + e)zmp+ Q = 0.

Since for Iz I = 1 we have' P I = IQ I, it follows by Rouche's theorem that in
the circle I z I = 1 the number of roots of the last equation is equal to the num­
ber of roots of zmp, that is to say, m +p - 1. As e~ 0, these roots vary con­
tinuously. Hence, for e = °we have m +p - 1 roots with modulus < 1 and,
hence, at most one root outside the unit circle.t

It is easy to show now that the root of Rm(z) with modulus larger than 1
actually exists. In fact, we have first

Rm(O) = Q(O) ~ 0,

since 0 is not quadratic. On the other hand, it is easily seen that P'(O) > 0. We
fix u > °small enough for P'(z) to have no zeros on the real axis in the inter­
val

o- u < z < 0+ u.

We suppose that in this interval P'(z) > J1., J1. being a positive number fixed as
soon as (J' is fixed.

If we take 0 real and I0 I < u, P(O + 0) has the sign of 0 and is in absolute
value not less than I0 I J1.. Hence, taking e.g.,

t We recall that we do not consider the number 1 as belonging to the class S (see Chapter I).

t This proof, much shorter and simpler than the original one, has been communicated to me
by Prof. Hirschman, during one of my lectures at the Sorbonne.
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we see that for m large enough

Rm(() + 0) = (() + o)mp(() + 0) + Q(() + 0)

has the sign of o. Taking oQ(()) < 0, we see that Rm (()) and Rm (() + 0) are, for
m large enough, of opposite sign, so that Rm(z) has a root T m

between () and () + m-t if Q(()) < 0,
and

between () - m-t and () if Q(()) > 0.

Hence, T m ~ () as m~ 00.

This proves, incidentally, since we can have a sequence of T m all different
tending to (), that there exist numbers of the class T of arbitrarily large degree.
It proves also that T m has, actually, conjugates of modulus 1, for'm large enough,
for evidently T m cannot be constantly quadratic (see Appendix, 5).

To complete the proof for () not quadratic, we consider, instead of zmp + Q,
the polynomial

zmp- Q ,
z - 1

which is also reciprocal, and we find a sequence of numbers of the class T ap­
proaching () from the other side.

Suppose now that () is a quadratic unit. Thus () is a quadratic integer> I,

with conjugate ~. Then () + ()-I is a rational integer r > 3. Denote by Tm(x)

the first Tchebycheff polynomial of degree m (i.e., Tm(x) = 2 cos mcp for
x = 2 cos cp). Tm has m distinct real zeros between -2 and +2. The equation

(x - r) Tm (x) - I = °
has then m - I real roots (algebraic integers) between -2 and +2, and one real
root between rand r + Em (Em > 0, Em ~°as m ~ (0). Putting

1
x = y+-,

y

we get an equation in y which gives us a number of the class T approaching ()
from the right as m~ 00.

We get numbers of T approaching () from the left if we start from the equation

(x - r)Tm(x) + 1 = 0.

This completes the proof of the theorem.

We do not know whether numbers of T have limit points other than num­
bers of S.
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5. Arithmetical properties of the numbers of the class T

We have seen at the beginning of Chapter I that, far from being uniformly
distributed, the powers (}n of a number () of the class S tend to zero modulo I.

On the contrary, the powers T m of a number T of the class Tare, modulo 1,
everywhere dense in the interval (0, 1). In order to prove this, let us consider a
number T > I of the class T, root of an irreducible equation of degree 2k.
We denote the roots of this equation by

1
T -,, T ..., ak-h ...,

where Iaj I = 1 and aj = arl is the imaginary conjugate of aj. We write

Our first step will be to show that the Wj (j = I, 2, ..., k - I) and 1 are
linearly independent.t For suppose, on the contrary, the existence of a relation

A o+ AlWl + ... + Ak-lWk-l = 0,

the A j being rational integers. Then

or

(1)

Since the equation considered is irreducible, it is known ([1] and Appendix, 6)
that its Galois group is transitive; i.e., there exists an automorphism u of the
Galois group sending, e.g., the root al into the root T. This automorphism can
not send any aj into 1/T; for, since u(al) = T,

and thus this would imply

1a·=-,
3 al

which is not the case. Thus the automorphism applied to (1) gives

if u(aj) = aj (j ~ 1). This is clearly impossible since T > 1 and Ia~ I = 1.
Hence, we have proved the linear independence of the Wj and I.

Now, we have, modulo I,

1 k-l
T m + ---;;, + L: (e27rifflWj + e-27rimwi) =0

T j=1

t This argument is due to Pisot.
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or
k-l

T m + 2 L: cos 27rmwj~ 0 (mod 1)
;j=1

as m~ 00. But by the well-known theorem of Kronecker on linearly inde­
pendent numbers ([2J and Appendix, 8) we can determine the integer m, arbi­
trarily large, such that

k-l

2 L: cos 27rmwj
;j=l

will be arbitrarily close to any number given in advance (mod 1). It is enough
to take m, according to Kronecker, such that

ImWl - 0 I < E (mod 1)

ImWj - ! I < E (mod 1) (j = 2, 3, ..., k - 1).

We have thus proved that the {Tm I (mod 1) are everywhere dense.
The same argument applied to ATm , Abeing an integer of the field of T, shows

that Arm (mod 1) is everywhere dense in a certain interval.

THEOREM V. Although the powers r m of a number T of the class Tare, mod­
ulo 1, everywhere dense, they are not uniformly distributed in (0, 1).

In order to grasp better the argument, we shall first consider a number T of
the class T of the 4th degree. In this case the roots of the equation giving T

are

1 1
T, -, ex, ex = - (I ex I = 1),

T ex

and we have, m being a positive integer,

Writing ex = e27riw, we have

T m + _1 + 2 cos 27rmw =0 (mod 1).
Tm

The number W is irrational. This is a particular case of the above result, where
we prove linear independence of Wl, W2, ••• , Wk-l, and 1. One can also argue
in the following way. If W were rational, ex would be a root of 1, and the equa­
tion giving T would not be irreducible.

Now, in order to prove the nonuniform distribution of T m (mod 1), it is enough
to prove the nonuniform distribution of 2 cos 27rmw. This is a consequence of
the more general lemma which follows.
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LEMMA. If the sequence {Un} ~ is uniformly distributed modulo 1, and if
w(x) is a continuous function, periodic with period 1, the sequence w(un) = Vn

is uniformly distributed if and only if the distribution function of w(x) (mod 1)
is linear.t

PROOF of the lemma. Let (a, b) be any subinterval of (0, I) and let X(x) be a
periodic function, with period I, equal for 0 < x < I to the characteristic func­
tion of (a, b). The uniform distribution modulo 1 of {vn } is equivalent to

N

2: X(vn)

lim 1 N = b - a.

But, owing to the uniform distribution of {Un},

1 N 1 N (1
lim N ~ X(Vn) = lim N ~ X[W(Un)J = }o X(W(X» dx.

Let w*(x) = w(x) (mod I), 0 < w*(x) < 1. The last integral is

/,1 X(w*(x»dx = meas E {a < w*(x) < b}.

Hence,

(2) meas E {a < w*(x) < b} = b - a,

which proves the lemma.

An alternative necessary and sufficient condition for the uniform distribution
modulo 1 of Vn = w(un) is that

(3) /,' e'''''''''x) dx ~ 0

for all integers h -:;e 0.
For the uniform distribution of {vn } is equivalent to

lim 1 t e21fihw(un) = lim 1 t e27rihVn = °
N 1 N 1

by Weyl's criterion. But

1 N /,1lim - 2: e27rihw(un) = e27rihw(x) dx.
N 1 0

Hence, we have the result, and it can be proved directly without difficulty, cou­
sidering again w*(x) , that (3) is equivalent to (2).

In our case {Urn} = {mw} is uniformly distributed modulo 1, and it is enough
to remark that the function 2 cos 27T"x has a distribution function (mod 1) which

t No confusion can arise from the notation w(x) for the distribution function and the number
w occurring in the proof of the theorem.
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is not linear. This can be shown by direct computation or by remarking that

/.' e'ril'~,.. = Jo(47rh)

is not zero for all integers h ~ o.
In the general case (T not quadratic) if 2k is the degree of T, we have, using

the preceding notations,

I k-1 k-l

T m+ --; + L: ar + L: arm = 0 (mod I)
T i=l i=l

or

I k-1

T m + ----; + L: 2 cos 27rmWi =0 (mod I)
T i=1

and we have to prove that the sequence

vm = 2 cos 27rmWl + ... + 2 cos 27rmWk_l

is not uniformly distributed modu10 I.
We use here a lemma analogous to the preceding one.

LEMMA. If the p-dimensional vector {un i }:=1 (j = 1, 2, ... p) is uniformly
distributed modulo I in Rp, the sequence

where w(x) is continuous with period I is uniformly distributed if and only if con­
dition (2) or the equivalent condition (3) is satisfied.

PROOF of the lemma. It is convenient here to use the second form of the
proof. The condition is

I IV- L: e27rihvn ~ 0 (h is any integer ~ 0).
NI

But

1- t e27rih{w(unl)+ ... +"'(UnP)I~ { (1 e27rihw (x) dx1p.

N n=l }o f
Hence the lemma.

Theorem V about T m follows from the fact that {mwl' mW2, .••, mWk-l} is
uniformly distributed in the unit torus of Rk-l owing to the fact that w}, ...,
Wk-}, and I are linearly independent. This completes the proof.

EXERCISE

Show that any number T of the class T is the quotient 0/0' of two numbers of
the class S belonging to the field of T. (For this and other remarks, see [13].)



Chapter IV

A CLASS OF SINGULAR FUNCTIONS; BEHAVIOR OF THEIR

FOURIER-STIELTJES TRANSFORMS AT INFINITY

1. Introduction

By a singular function I(x) we shall mean, in what follows, a singular con­
tinuous monotonic function (e.g., nondecreasing), bounded, and whose derivative
vanishes for almost all (in the Lebesgue sense) values of the real variable x.

A wide class of singular functions is obtained by constructing, say, in (0, 21r)
a perfect set of measure zero, and by considering a nondecreasing continuous
function I(x), constant in every interval contiguous to the set (but not every­
where).

A very interesting and simple example of perfect sets to be considered is the
case of symmetrical perfect sets with constant ratio of dissection. Let ~ be a
positive number, strictly less than -!, and divide the fundamental interval, say,
(0, 21r), into three parts of lengths proportional to ~, I - 2~, and ~ respectively.
Remove the central open interval ("black" interval). Two intervals ("white"
intervals) are left on which we perform the same operation. At the kth step
we are left with 2k white intervals, each one of length 21r~k. Denote by Ek the
set of points belonging to these 2k closed white intervals. Their left-hand end
points are given by the formula

(1) x = 21r[El(1 - ~) + E2~(1 - ~) + ... + Ek~k-l(1 - ~)],

where the Ei are 0 or I. The intersection of all Ek is a perfect set E of measure
equal to

21r Hm (~k2k) = 0
k=oo

and whose points are given by the infinite series

(2) x = 21r[El(1 - ~) + E2~(1 - ~) + ... + Ek~k-l(1 - ~) + ...],
where the Ei can take the values 0 or I. The reader will recognize that the classical
Cantor's ternary set is obtained by taking ~ = !.

We define now, when x E E, a function f(x) given by

when x is given by (2). It is easily seen that at the end points of a black interval
(e.g., El = 0, E2 = E3 = ... = I and El = I, E2 = E3 = ... = 0) I(x) takes the same
value. We then define f(x) in this interval as a constant equal to this common
value. The function f(x) is now defined for 0 < x < 21r (f(O) = 0, f(21r") = I),
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is continuous, nondecreasing, and obviously singular. We shall call it the
"Lebesgue function" associated with the set E.

The Fourier-Stieltjes coefficients of df are given by

(3)
{21r

Cn = (271")-1}O eni.r- df(x),

and, likewise, the Fourier-Stieltjes transform of df is defined by

"(u) = (211")-1 f-: e,d. df(x)

= (211")-1 /.2. euix df(x)

for the continuous parameter u, f being defined to be equal to 0 in (- 00, 0)
and to I in (271", 00).

One can easily calculate the Riemann-Stieltjes integral in (3) by remarking
that in each "white" interval of the kth step of the dissection f increases by
1/2k • The origins of the intervals are given by (I), or, for the sake of brevity, by

with 'k = ~k-1(1 - ~). Hence an approximate expression of the integral

{21r

}o e
nix

df

IS

the summation being extended to the 2k combinations of fj = 0, I. This sum
equals

k
I k 1rni ~r. k

- IT (1 + e21rnir) - e 1 IT2k • - cos 7I"n'lI.
8=1 8=1

00

Since L: '8 = 1, we have
1

(4)

and likewise

(5)

00 00

e-1rni 271"Cn = IT cos 7I"nr k = IT cos 7I"n~k-1 (I - ~)
k=1 k=l

00

e-1rlti 271")'(u) = IT cos 7I"U~k-1 (I - ~).
k=l
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2. The problem of the behavior at infinity

It is well known in the elementary theory of trigonometric series that if f is
absolutely continuous, the Fourier-Stieltjes transform

"f(u) = (27r)-1 f,21r euix df

tends to zero as I u I~ 00, because in this case "f(u) is nothing but the ordinary
Fourier transform of a function of the class L. The situation is quite different
iff is continuous, but singular. In this case "f(u) need not tend to zero, although
there do exist singular functions for which "f(u) ~ 0 ([17J, and other examples
in this chapter). The same remarks apply to the Fourier-Stieltjes coefficients cn •

The problem which we shall solve here is the following one. Given a sym­
metrical perfect set with constant ratio of dissection ~, which we shall denote
by E(~), we construct the Lebesgue function f connected with it, and we try
to determine for what values of ~ the Fourier-Stieltjes transform (5) (or the
Fourier-Stieltjes coefficient (4» tends or does not tend to zero as I u I (or In J)
increases infinitely.

We shall prove first the following general theorem.

THEOREM I. For any function of bounded variation f the Riemann-Stieltjes
integrals

1"21r 1"21r
27rcn =}o enix df and 27r"y'(u) =}o euix df

tend or do not tend to zero together when I n Ior I u I tends to 00.

Since it is obvious that "f(u) = 0(1) implies Cn = 0(1), we have only to prove
the converse proposition. We shall base this proof on the following lemma, in­
teresting in itself.

LEMMA. Let f(x) be a function of bounded variation such that, as In f~ 00,

(6) t 1r
}o enicr df~ o.

Let B(x) be any function such that the Lebesgue-Stieltjes integral

f,21r B(x)df(x)

has a meaning. Then the integral

t 1r
}o enixB(x)dj

tends also to zero for In I = 00.
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PROOF of the lemma. We observe first that by the properties of the Lebesgue­
Stieltjes integral, there exists a step function T(x) such that

(7) J.27r I B(x) - T(x) Idf < E,

E being arbitrarily small. Secondly, by a well-known theorem of Wiener [17J,
the condition (6) implies that f is continuous. Hence, in (7) we can replace T(x)
by a trigonometric polynomial P(x). But (6) implies

J.
27r

o enixP(x)df~ O.

Hence, E being arbitrarily small in (7), we have

J.
27r

o B(x)enix df~ 0

as stated in the lemma.

PROOF of Theorem I. Suppose that

Cn ~ 0 as In I~ 00.

If "f(u) does not tend to zero as I u I~ 00, we can find a sequence

{Udk=l with I Uk I~ 00

such that

Let

nk being an integer and 0 < CY.k < 1. By extracting, if necessary, a subsequence
from {ud, we can suppose that CY.k tends to a limit CY.. We would then have

IJ.27r enlcixeaix df I > ~ > 0,

which is contrary to the lemma, since Cn ~ 0 and eaix is continuous.

It follows now that in order to study the behavior of Cn or "f(u), it is enough
to study

(8)

when u~ 00.

00

r(u) = IT cos 1rU~k
k=l
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THEOREM 11. The infinite product r(u) tends to zero as u~ 00 if and only
if 1/~ is not a number of the class S (as defined in Chapter I). We suppose here
~ ~~.

Remark. We have seen that the expressions (4) and (5) represent respectively
the Fourier-Stieltjes coefficient and the Fourier-Stieltjes transform of the Lebesgue
function constructed on the set E(~) if 0 < ~ <~. Nevertheless, it is easy to
see that in order that the infinite products (4), (5), (8) have a meaning, it is
enough to suppose that 0 < ~ < 1. For example, r(u) still represents a Fourier­
Stieltjes transform if only 0 < ~ < 1, namely the transform of the monotonic
function which is the convolution of an infinity of discontinuous measures
(mass ~ at each of the two points 1r~k, - 1r~k).

Our theorem being true in the general case 0 < ~ < 1, we shall only assume
this condition to prove it.

PROOF of Theorem 11. If r(u) ~ 0(1) for u = 00, we can find an infinite
increasing sequence of numbers Us such that

I r(us) I > 0 > o.
Writing 1/~ = 0 (0 > 1), we can write

where the ms are natural integers increasing to 00, and I < 'As < O.
By extracting, if necessary, a subsequence from {us}, we can suppose that

'As~ A (1 < A <0). We write

Ir (us) I < cos 1rAs cos 1r'AsO . . . cos 1rAsOm.,

whence

m.

IT [1 - sin2 1rAsOq] > 02,
q=O

and, since 1+ x < ex,
m.

- I sin2 1rX,fJQ

e q=O > 02•- ,
that is to say,

m.
~ sin2 1rAsOq < log (1/02).
q=O

Choosing any r > s, we have

m. 1nr

~ sin2 1r'Al)q < ~ sin2 1r'ArOq < log (1/02).

q=O q=O
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Keeping now s fixed and letting r ~ 00, we have

m.

L: sin2 7rA()q < log (1/02),

q=o

and, since s is arbitrarily large,

00

L: sin2 7rA()q < log 0/02),

q=O

which, according to the results of Chapter I, shows that () = ~-1 belongs to the
class S.

We have thus shown that r(u) -:;e 0(1) implies that () E S.
Conversely, if () E Sand () -:;e 2, then r(u) does not tend to zero. (Remark

that if ~ = t, the Fourier-Stieltjes coefficient en of (4) is zero for all n -:;e 0 and
thenf(x) = x (0 < x < 27r).)

Supposing now () = ~-1 -:;e 2, we have

7r 7r 7r
r«()k) = Icos 7r() cos 7r()2 ..• cos 7r()k I. Icos (j cos ()2 ... COS()k··· I·

Since () E S, we have L: sin2 7r()n < 00. Hence, the infinite product
00

IT cos2 7r()m
m=l

converges to a number A -:;e 0 (except if ()q = h +t, h being a natural integer,
but this is incompatible with the fact that () E S). Hence,

_/- 7r 7rI r«()k) I > v A Icos (j cos ()2 ... I

and the last product converges to a number B > 0, since () ~ 2 «()q = 2 is im­
possible for q > 1 if () E S). Hence,

I r«()k) I > BVA,

which completes the proof of Theorem 11.



Chapter V

THE UNIQUENESS OF THE EXPANSION

IN TRIGONOMETRIC SERIES;

GENERAL PRINCIPLES

1. Fundamental definitions and results

Let us consider a trigonometric series

(S)
00

~ (an cos nx + bn sin nx),
o

where the variable x is real. The classical theory of Cantor shows [I7J that
if this series converges everywhere to zero, it vanishes identically.

Cantor himself has generalized this result by proving that if (S) converges to
zero for all values of x except for an exceptional set E containing afinite number
of points x, then the conclusion is the same one, i.e.,

an = 0, bn = °for all n.

Cantor proved also that the conclusion is still valid if E is infinite, provided
that the derived set E' is finite, or even provided that anyone of the derived sets
of E (of finite or transfinite order) is empty, in other words if E is a denumerable
set which is reducible [17J.

The results of Cantor go back to the year 1870. Not until 1908 was it proved
by W. H. Young that the result of Cantor can be extended to the case where E
is any denumerable set (even if it is not reducible).

The preceding results lead to the following definition.

DEFINITION. Let E be a set ofpoints x in (0, 271"). Then E is a set of uniqueness
(set U) if no trigonometric series exists (except vanishing identically) converging
to zero everywhere, except, perhaps, for x E E. Otherwise E will be called set of
multiplicity (set M).

We have just seen that any denumerable set is a set U. On the other hand,
as we shall easily show (page 44);

If E is of positive measure, E is a set M.

It is, therefore, natural to try to characterize the sets of measure zero by clas­
sifying them in "sets U" and "sets M." We shall give a partial solution of this
problem in the next two chapters, but we must begin here by recalling certain
classical theorems of the theory of trigonometric series of Riemann [17J.
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DEFINITIONS. (a) Given any function G(x) of the real variable x, we shall write

! d 2G( h) = G(x + h) + G(x - h) - 2G(x)
h2 X, h2 '

and, if this expression tends for a given fixed x to a limit A, as h~ 0, we shall
say that G(x) has, at the point x, a second generalized derivative equal to A.

(b) If, at a given point x, the expression

~ d 2G(x, h) = G(x + h) + G~ - h) - 2G(x)

tends to zero as h~ 0, we shall say that G(x) is smooth at the point x.

THEOREM I (Cantor-Lebesgue). If the trigonometric series

(1)
""

!ao + L: (an cos nx + bn sin nx)
1

converges in a set of positive measure, its coefficients an and bn tend to zero.

DEFINITION. Ifwe integrate the series (1) formally twice, assuming that an ~ 0,
bn~ 0, we obtain the continuous function

(2) F() 1 2 L:"" (an COS nx + bn sin nx)x=-aoX- ,
4 1 n2

the last series being uniformly convergent. If, at a given point x, F(x) has a second
generalized derivative equal to s, we shall say that the series (1) is summable­
Riemann (or summable-R) and that its sum is s.

THEOREM H. If the series (1) (an, bn~ 0) converges to s at the point x, it is also
summable-R to s at this point.

THEOREM HA. If the series (1) with coefficients tending to zero is summable-R
to zero for all the points of an interval, it converges to zero in this interval (conse­
quence of the principle of "localization").

THEOREM HI. The function F(x) (always assuming an~ 0, bn~ 0) is smooth
at every point x.

THEOREM IV. Let G(x) be continuous in an interval (a, b). If the generalized
second derivative exists and is zero in (a, b), G(x) is linear in (a, b).

THEOREM V. Theorem IV remains valid if one supposes that the generalized
second derivative exists and is zero except at the points of a denumerable set E,
provided that at these points G is smooth.

Historically, this last theorem was proved first by Cantor (a) when E is finite,
(b) when E is reducible, i.e., has a derived set of finite or transfinite order which
is empty. It was extended much later by Young to the general case where E
is supposed only to be denumerable.
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From Theorem V we deduce finally:

THEOREM VI. If the series (1) converges to 0 at all points of (0, 27r) except
perhaps when x belongs to a denumerable set E, the series vanishes identically. In
other words every denumerable set is a set U, which is the above stated result.

PROOF. This follows immediately as a consequence of Theorems 11, Ill, and
V. For the application of these theorems shows that the function F(x) of (2) is
linear. Hence, for all x,

2:00 an cos nx + bn sin nx I 2 A B
------:------ = - aoX - x-

1 n2 4

and the periodicity of the series implies ao = A = 0; next, the series being uni­
formly convergent, B = 0 and an = bn = 0 for all n.

We shall now prove the theorem on page 42:

THEOREM. Every set ofpositive measure is a set M.

PROOF. Let EC (0, 27r) and IEl> O. It will be enough to prove that there
exists a trigonometric series (not vanishing identically) and converging to zero
in the complementary set of E, that is, CE.

Let P be perfect such that PC E, and IPI> O. Let x(x) be its characteristic
function. In an interval ~ contiguous to P, one has x(x) = 0; hence the Fourier
series of X(x),

ao 00

"2 + ~ (an cos nx + (3n sin nx) t'o.I X(x),

converges to zero in~. Hence it converges to zero in CP, and also in CE C CP.
But this series does not vanish identically, since

1 /.211" IPI
ao = i- 0 X(x)dx = 1r > 0,

which proves the theorem.

2. Sets of multiplicity

The problem of the classification of sets of measure zero into sets U and sets M
is far from solved. But it is completely solved for certain families of perfect
sets, as we shall show in the next two chapters.

We shall need the following theorem.

THEOREM. A necessary and sufficient condition for a closed set E to be a set of
multiplicity is that there should exist a trigonometric series
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(not vanishing identically) with coefficients cn = 0 (~) t and representing a constant t
in each interval contiguous to E.

PROOF. The condition is necessary. Let E, closed, be of the type M, and
consider a nonvanishing trigonometric series

(S)
-00

converging to zero in every interval contiguous to E.
We show first that we can then construct a series

(S')
-00

but with 1'0 = 0, having the same property. For (S) has at least one nonvanishing
coefficient, say, I'k. Let I ~ k. The series

(S') = I'ke-ilx (S) - I'le- ikx (S)

has a vanishing constant term, and converges to zero, like (S), for all x belonging
to CE, the complementary set of E. Let El be the set where (S) does not con­
verge to zero. (S') cannot vanish identically, for the only points of El (which is
necessarily infinite) where (S') converges to zero are the points (finite in number)
where

Let us then consider the series
00

I: I'nenix (1'0 = 0),
-00

converging to zero in CE. The series integrated twice,

-1 00

I: + I: I'n
2

einx,
-00 I-n

represents by Riemann theorems (11 and IV on page 43) a linear function in each
interval of CE. But this series is the integral of the Fourier series

-1 00

I: + I: I'~ einx
,

-00 1 nl

which must hence represent a constant in each interval of CE, and it is now
enough to remark that

cn = I'~ = 0 (!),
m n

since necessarily l'n ~ 0 (Th. I).

t The series is a Fourier series by the Riesz-Fischer theorem.
t Hence, by the elementary theory, converging to this constant.
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The condition is sufficient. Suppose that the series

(not vanishing identically) with Cn = 0 (~) represents a constant in each interval

of CE. One can write

'Yn . h 0Cn = -. WIt 1"n ~ •
m

It follows that the integrated series

CoX - ~ 1"; einx

Inl~l n

represents a linear function in each interval of CE. Hence, the series

is summable-R to zero in each interval of CE, and thus, by Theorem HA, con­
verges to zero in each interval contiguous to E, the set E being, therefore, a set
of multiplicity.

Remark. If the series

of the theorem represents a function of bounded variation, the series

converging to zero in CE is a Fourier-Stieltjes series (in the usual terminology,
the Fourier-Stieltjes series of a "measure" whose "support" is E). In this case,
we say that E is a set of multiplicity in the restricted sense.

To construct a set of multiplicity in the restricted sense, it is enough to con­
struct a perfect set, support of a measure

whose Fourier-Stieltjes coefficients,

1 /.211"
'Yn = 21T" 0 e- inx dp,(x),

tend to 0 for In I~ 00.

Consequence. The results of Chapter IV show that every symmetrical perfect
set E(~) with constant ratio ~, such that 1/ ~ is not a number of the class S, is
a set of multiplicity. In view of the preceding remark, it is enough to take for
p, the Lebesgue function constructed on the set.
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3. Construction of sets of uniqueness

We have just seen that in order to show that a closed set E is a set of uniqueness,
we must prove that there is no series

(not vanishing identically) with coefficients Cn = 0 (~) representing a constant

in each interval of CE.
We were able to prove only that a symmetrical perfect set E(~) is a set M

if ~-1 does not belong to the class S, but we cannot, at this stage, prove that if
~-1 E S, then E(~) is a set U. This is because we only know that if ~-1 E S, the
Fourier-Stieltjes coefficients of the Lebesgue measure constructed on the set
do not tend to zero. But we do not know (a) whether this is true for every
measure whose support is E(~) or (b) whether there does not exist a series

-00

with Cn = 0 (~) representing a constant in each interval of CE, and which is

not a function of bounded variation (i.e., the derived series L: 'Ynenix is not a
Fourier-Stieltjes series).

A negative proof of this kind would be rather difficult to establish. In general,
to prove that a set E is a set of the type U, one tries to prove that it belongs to a
family of sets of which one knows, by certain properties of theirs, that they
are U sets.

In this connection, we shall make use of the following theorem.

THEOREM I. Let E be a closed set such that there exists an infinite sequence
offunctions {Ak(X)} ~ with the following properties:

1. Ak(X) = 0 for all k when x E E.

2. The Fourier series of each

n

is absolutely convergent, and we have

L: I"In (k) I < A, constant independent of k.
n

3. We have lim 'Yn(k) = 0 for n ~ 0,
k=oo

lim 'Yo(k) = I ~ o.
k= 00

4. The derivative A£(X) exists for each x and each k, and is bounded (the bound
may depend on k).

Under these conditions, E is a set of uniqueness.



18 The Uniqueness of the Expansion in Trigonometric Series

We shall first prove the following lemma.

LEMMA. Let E be a closed set, X(x) a function vanishing for x E E and having
an absolutely convergent Fourier series L 'Ynenix, and a bounded derivative X'(x).
Let L cnenix be a trigonometric series converging to zero in every interval of the
complementary set CE. Under these conditions we have

L 'YnCn = O.

(The series is obviously convergent, since L I 'Yn I < 00 and en ~ 0.)

PROOF. Let ~ be an interval contiguous to E. The series

x
2

'"' Cn .
Co 2 - L- n2 enlX

converges to a linear function in~. Hence, the Fourier series

f '"'* cne
nix

1"0.1 L- --,
ni

where the star means that there is no constant term, represents in ~ a function
-cox + a, the constant a = a(A) depending on A. Parseval's formula is applicable
[17J in our hypothesis to the functionsf(x) and

X'(x) 1"0.1 L 'Ynnienix

and gives

1 1,271'--2 X'(x)[(x)dx = - L 'YnCn.
7r 0 Inl~ 1

The integral is equal to

(27r)-1 L ( X'(x) (-coX + a)dx,
d }d

since X and X' are zero for x E E. (Note that if E is closed, but not perfect,
its isolated points are denumerable.) Integrating by parts,

1. X'(x) (-coX + a)dx ~ [(-coX + a))\J. + Co 1. X(x)dx,

and comparing the three last relations, we have

or, as stated,
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Remark. The hypothesis that A'(x) is bounded could be relaxed (which would
lead also to a relaxation of the hypothesis (4) of the theorem), but this is of no
interest for our applications. It should be observed, however, t~at some hy­
pothesis on A(x) is necessary. We know, in fact, since the obtention of recent
results on spectral synthesis [6J, [8J, that the lemma would not be true if we
assume only that A(x) = 0 for x E E, and that its Fourier series is absolutely
convergent

PROOF of Theorem I. Suppose that E is not a set of uniqueness. Hence,
suppose the existence of

(not identically 0) converging to 0 in each interval of CE. The lemma would
then give

(3)

for all k.
Since Cn ~ 0 for n = 00 (by general Theorem I on page 43), the hypothesis (2)

gives

E being arbitrarily small for N large enough. Having fixed N, we have

I L 'Yn(k)Cn I < E
l~lnl<N

for k large enough, by the hypothesis (3) of the_theorem.
Hence the first member of (3) differs from col by a quantity arbitrarily small,

for k large enough. This proves that Co = O.
Multiplying the series

by e-ki .r , we find its constant term to be Ck. Thus the argument gives that Ck = 0
for all k, that the series L cneni.r is identically 0, and that E is a set of the type U.

First application: Sets of the type H. A linear set E C (0, 27r) is said to be
"of the type H" if there exists an interval (a, (3) contained in (0, 27r) and an
infinite sequence of integers {nd 7 such that, for whatever x E E none of the
points of abscissa nkX (reduced modulo 27r) belongs to (a, (3).

For example, the points of Cantor's ternary set constructed on (0, 27r):

[
El E2 Ek ]X = 27r -- +- + ... + - + ...
3 32 3k

where Ej is 0 or 2, form a set of the type H, since the points 3kx (mod 27r) never
belong to the middle third of (0, 27r). The situation is the same for every sym­
metrical perfect set E(~) with constant ratio ~, if l/~ is a rational integer.
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THEOREM 11. Every closed set of the type H (and thus also every set of the
type H t) is a set U.

PROOF. Let us fix an e > 0, arbitrarily small and denote by A(X) a function
vanishing in (0, a) and in ({3, 211"), equal to 1 in (a + e, (3 - e) and having a
bounded derivative A'(X) , so that its Fourier series is absolutely convergent.
Write

A(X) = :E 'Ymemix

m

and
Ak(X) = "'A(nkX) = :E 'Ymemn"ix.

m

The sequence of functions {Ak(X)} satisfy the conditions (1), (2), (3), (4) of
Theorem I. In particular, A(nkx) is zero for all x E E and all k, and since

'Yn (k) = I'm

if and only if n = mnk and 'Yn (k) = 0 if nkln, we see that the conditions (3) are
satisfied, with

1 (21r
1= 1'0 = 211"}o A(x)dx = (211")-1({3 - a - 2e),

which is positive if e has been chosen small enough.

Second application. Sets of the type H(n). The sets of the type H have been
generalized by Piatecki-Shapiro, who described as follows the sets which he calls
"of the type H(n)."

DEFINITION. Consider, in the n-dimensional Euclidean space Rn, an infinite
family of vectors {Vk} with rational integral coordinates

Vk = {Pk(l),Pk(2), ...,pk(n)} (k = 1,2, ...).

This family will be called normal, if, given n fixed arbitrary integers al, a2, ..., an
not all zero, we have

Ialpk (l) + a2pk (2) + ... + anpk(n) I~ 00

ask~oo.

Let ~ be a domain in the n-dimensional torus

o< Xj < 211" (j = 1, 2, ..., n).

A set E will be said to belong to the type H(n) if there exists a domain ~ and
a normal family of vectors Vk such that for all x E E and all k, the point with
coordinates

all reduced modulo 211", never belongs to ~.

t If E is of the type H, so is its closure, and a subset of a U-set is also a U-set.
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THEOREM Ill. Every set E of the type H(nl is a set of uniqueness.

PROOF. We can again suppose that E is closed, and we shall take n = 2,
the two-dimensional case being typical. Suppose that the family of vectors

Vk = (pk' qk)

is normal. We can assume that A consists of the points (Xl, X2) such that

al < Xl < {3t,
a2 < X2 < {32,

the intervals (al, (31) and (a2' (32) being contained in (0, 27r).
We shall denote by X(x) and J1.(x) respectively two functions constructed with

respect to the intervals (at, (31) and (a2, (32) as was, in the case of sets H, the
function X(x) with respect to (a, (3). Under these conditions, the functions

X(PkX) J1. (qkX) (k = 1, 2, ...)

are equal to zero for all k and all X E E. This sequence of functions will play
the role of the sequence denoted by Xk(x) in Theorem I. Thus, the condition (1)
of that theorem is satisfied.

Write

X(x) = ~ 'Ymeimx, J1.(x) = ~ Omeimx.

The Fourier series of X(PkX)J1.(qkX) is absolutely convergent, and, writing

X(PkX)J1.(qkX) = ~ Cn(kleinx,

we have

and

This proves that condition (2) is also satisfied.
Condition (4) is satisfied if we have chosen X(x) and J1.(x) possessing bounded

derivatives.
Finally, for condition (3) we note that

(4) Cn(kl = ~ 'YmOm"
n=mpk+m'qk

Suppose first n = O. Then

CO(kl = ~ 'YmOm'
mPk+m'qk =0

= "1000 + L* 'YmOm' = "'1000 + T
mPk+m'qk=O

the star meaning that Im I+ Im' I ~ O. We shall prove that T tends to zero
for k ~ 00. Write T = Tl + T2, where Tl is extended to the indices Im I < N,
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I rn' I <N. Since the family of vectors {Vk} is normal, if I rn I+ I rn' I ¥= 0,
rnpk + rn'qk cannot be zero if k is large enough, and if rn and rn' are chosen
among the finite number of integers such that I rn I < N, I rn' I <N. On the
other hand, in T2either I rn I > Ni or Irn' I > N and thus

00 00

I T2 1< ( L I'm)(L I Om' J) + (L II'm D( L I Om' I)
Inl>N -00 -00 Im'I>N

is arbitrarily small for N large enough. Choosing first N, and then k, we see
that

CO(k) ~ 1'000

as k ~ 00, and since 1'000 ¥= 0, the second part of condition (3) is satisfied.
If now n ¥= 0, the second member of (4) does not contain the term where

rn = 0, rn' = O. The same argument leads then to

Cn (k) ~ 0 for k = 00, n ¥= O.

This concludes the proof that all conditions of the general theorem are satisfied
and hence that the set E is a set of uniqueness.

In the following two chapters we shall apply the preceding theorems to special
sets: symmetrical perfect sets with constant ratio of dissection, and "homo­
geneous sets."



Chapter VI

SYMMETRICAL PERFECT SETS WITH CONSTANT

RATIO OF DISSECTION; THEIR CLASSIFICATION

INTO M-SETS AND U-SETS

In this chapter and in the following one we shall make use of the fundamental
theorem of Minkowski on linear forms. For the proof we refer the reader to
the classical literature. (See, e.g., [5J.)

MINKOWSKI'S THEOREM. Consider n linear forms of n variables

n

Aix) = ~ aqPXq (p = I, 2, ..., n)
q=l

where we suppose first the coefficients aq
P to be real. We assume that the de­

terminant D of the forms is not zero. If the positive numbers 01, 02, ..., On are such
that

there exists a point x with rational integral coordinates (Xl, X2, •••, xra) not all zero
such that

IAp(x) I <op (p = I, 2, ... , n).

The theorem remains valid if the coefficients aq
P are complex numbers pro­

vided:
1. the complex forms figure in conjugate pairs
2. the op corresponding to conjugate forms are equal.

THEOREM. Let E(~) be a symmetrical perfect set in (0, 271'") with constant ratio
of dissection~. A necessary and sufficient conditionfor E(~) to be a set of unique­
ness is that I/~ be a number of the class S [14].

PROOF. The necessity of the condition follows from what has been said in
the preceding chapter. We have only to prove here the sufficiency: If ~-I be­
longs to the class S, E(~) is a U-set.

We simplify the formulas a little by constructing the set E(~) on [0, 1]. We
write 0 = I/~ and suppose, naturally, that 0 > 2. We assume that 0 is an
algebraic integer of the class S and denote by n its degree. We propose to show
that E(~) is of the type H(n), and hence a set of uniqueness.

The points of E(~) are given by

x = EIrI + E2r2 + ... + Ejrj + ...
. 1 ( I) 0 - 1where rj = ~1-I(l - ~) = Oi-I 1 - 7J = (ji and the Ej are °or 1.
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Thus,

x = «() - I) [~l + ~~ + ... + dj+ .. -J.
By X we denote a positive algebraic integer of the field of (), which we shall
determine later. We denote by ab a2, ..., an-l the conjugates of () and by
J.L1, J.L2, ••., J.Ln-1 the conjugates of X.

We have, x being a fixed point in E(~) and m a rational integer > 0,

X()mX = X«() - I) (EOH + .. -) + R

R = X«() - I) (EI()m-1 + E2()m-2 + ... + Em).

Observe that, for any natural integer p > 0,

n-l

X«() - I)()p + L: J.Li(ai - l)aiP =° (mod I).
i=l

That is to say

n-l
X«() - I)()p =- L: J.Llai - I)a~.p.

i=l .

Hence, remembering that the Iai I are < I,

(2) IR I < 2 }; I J.Li Ito Iai Im = 2 }; 1 ~Iili I (mod 1).

Let us now write (1), after breaking the sum in parenthesis into two parts, as

(3) X()mx = X«() - I) (Eftl + ... + EotN)+ X«() - 1) (E'Ot:t + ...) + R

= P+ Q+R.

We have

(4)
()-N-I X

IQ I < X«() - I) 1 _ ()-I = ()N'

We now choose X of the form

X= Xl + X2() + ... + xn()n-l,

where the Xj are rational integers. Then, obviously,

}J-i = Xl + X2ai + ... + xnain- I (i = I, 2, ..., n - I).

By Minkowski's theorem, we determine the rational integers, such that

(5) ~ < ~. 2 I J.Li I < _0"_ (2 )
() 2NI ' 1 I I 2NI i = I, •..., n - 1 ,n - n n - ai - n n
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where (J' will be determined ina moment. The determinant of the forms
,.

X· , , 2JJ.i
(}N and 1 _ I (Xi I (i = 1, 2,' ..., n = 1)

can be written as
A'
(}N'

I

where ~ is a nonvanishing determinant depending only on () (and independent
of N), say, ~ = ~((}). Minkowski's theorem can be applied, provided

fr ~
nn2N> (}N'

and, after choosing (J', we can always determine N so that this condition be
fulfilled, since ()/2 > 1.

By (2), (3),(4), and (5), we shall rhen obtain for an arbitrary fixed x E E(~)

and any arbitrary natural integer m > 0

(J'
I }..(}mx -- P I<- (mod 1),

- 2 N1n

that is to say

(6) IX(}mx - X((} - 1) (em+l + ... + em+N
) I< -!!- (mod 1).() (}N - 2N1n

Denote now by gm the fractional part of P (depending on m), and denote by Ok,

k an arbitrary natural integer, the point having the coordinates gk+h gk+2, ..•, gk+n.

The number of points Ok depends evidently on k, n, and the choice of the e's;
but we shall prove that there are at most 2N+-n-l distinct points Ok. In fact,
observe that gk+l can take 2N values (according to the choice of the e's). But,
once gk+l is fixed, gk+2 can only take 2 different values; and, once' gk+l and gk+2
are fixed, gk+3 can take only, 2, distinct v,alues. ,Thus the number of points Ok
is at most 2N+n- 1• ,,' '

Let now M k be thep'oint whose coord,inatesare

(X(}k+lX), {'A(}k'4-2i), ..., (X(}k+nx),

where (z) denotes, as' usual,. the fractional part of z. This point considered as
belonging to the n-dimensional unit tonus is, by (6), interior to a cube of side

2(J'
·2zv,1n,

and of center Ok. The number of cubes is at most 2N+n- 1 and their total volume
IS
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If we take (j < t, there will remain in the torus 0 < Xi < 1 U= 1, 2, ..., n)
a "cell" free of points Mk • This will also be true, for every k > ko large enough,
for the point M~ of coordinates

(C/c+lX), •••, (C/c+nX),

if we denote generally by Cm the integer nearest to X(}m, since we know that
XOm = Cm + Om with Om~ 0 (m~ <Xl).

To show now that E(~) is of the type H(n), we have only to prove that the
sequence of vectors

Vk = (Ck+J, C/c+2, •.•, Ck+n)

in the Euclidean space Rn is normal. Let ah a2, •••, an be natural integers, not
all zero.. We have

alCk+l + ... + anCk+n = X(al(}k+l + ... + an(}k+n) + (aIOk+l + ... + anOh+n).

If k ~ <Xl, the last parenthesis tends to zero. On the other hand, the first paren­
thesis equals

X(}k+l(al + a2(} + ... + an(}n-l),

and its absolute value increases infinitely with k, since, (} being of degree n,
we have

This completes the proof.

Remark. We have just proved that if (} belongs to the class S and has degree n
the set E(~) is of the type H(n). But it does not follow that E cannot be of a
simpler type. Thus, for instance, if (} is quadratic, our theorem shows that E
is of the type H(2). But in this particular case, one can prove that E is, more
simply, of the type H.t

Stability of sets of uniqueness. We have shown in Chapter Il that the set
of numbers of the class S is closed. If E(~o) is a set M, ~O-l belongs to an open
interval contiguous to S. Hence, there exists a neighborhood of ~o such that
all numbers of this neighborhood give again sets M. Thus, a symmetrical
perfect set of the type M presents a certain stability for small variations of ~.

On the contrary, if E(~o) is a U-set, there are in the neighborhood of ~o numbers
~ such that E(~) is an M-set. The sets of uniqueness are are "stable" for small
variations of ~.

t See Trans. Amer. Math. Soc., Vol. 63 (1948), p. 597.
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THE CASE OF GENERAL "HOMOGENEOUS" SETS

1. Homogeneous sets

The notion of symmetrical perfect set with constant ratio of dissection can be
generalized as follows.

Considering, to fix the ideas, the interval [0, IJ as "fundamental interval,"
let us mark in this interval the points of abscissas

T/o = 0, T/h T/2, •••, T/d (d > I; T/d = 1 - ~),

and consider each of these points as the origin of an interval ("white" interval)
of length ~, ~ being a positive number such that

1
~ < d+ I

T/i+l - T/j > ~ (for allj)

so that no two white intervals can have any point in common. The intervals
between two successive "white" intervals are "black" intervals and are removed.
Such a dissection of [0, IJ will be called of the type (d, ~; T/o, T/h T/2, •••, T/d).

We operate on each white interval a dissection homothetic to the preceding
one. We get thus (d+ 1)2 white intervals of length ~, and so on indefinitely.
By always removing the black intervals, we get, in the limit, a nowhere dense
perfect set of measure zero, whose points are given by

(1) x = Eo + El~ + E2~ + .. "
where each Ej can take the values T/o, T/h •••, T/d.

The case of the symmetrical perfect set is obtained by taking

d = 1, T/o = 0, T/l = I - ~.

The set E of points (1) will be called "homogeneous" because, as is readily
seen, E can be decomposed in (d+ I)k portions, all homothetic to E in the
ratio ~k (k = I, 2, ...).

2. Necessary conditions for the homogeneous set E to be a U-set

Since each subset of a set of uniqueness is also a set of uniqueness, if we con­
sider the set Eo C E whose points are given by (1) but allowing the Ej to take
only the values T/o = °or T/d = I - ~, then Eo is a set U, if E is a set U.

But Eo is a symmetrical perfect set with constant ratio of dissection~. Hence,
if the homogeneous set E is a U-set, we have necessarily ~ = 1/8, where 8 is a
number of the class S. .
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Consider further the subset E' of E whose points are given by (1) but with the
choice of the Ej restricted as follows:

Eo = 0 or ''1]1

El = 0 or '1]2

Ed-l = 0 or '1]d

The points of this set E' are given by

, 'Ei'=~ O,'or ''1]1

Ed+l = 0 or '1]2 etc.

E2d-l = 0 or 1]d

,., .

x' = Ei'1]l + E~'1]2~ + ... + E~'1]d~d-l + E~+l'1]l~d + ... = L E;rj,

where the E; are either 0 or 1.
We can, as in the case of symmetrical perfect sets, define a measure carried by

this set and prove that its Fourier-Stieltjes transform is

(2)
00 ,

IT cos -rrur". '
k=l '

If E is a U-set, E' is a U-set and (2) cannot tend to zero if u~ 00. It follows
that there exists an infinite sequence of values of u for which each of the infinite
products

cos 7rU'1]1 • cos 7ru'1]1~d • cos 7rU'1]1~2d ••.

cos 7rU'1]2~ • cos 7rU'1]2~d+I i' cos 7rU'1]2e-d+1 ••• '

cos 7rU'1]d~d-l • cos 7rU'1]~~d-l • cos 7rU'1]d~d-l

has absolute value larger than a fixed positive number a. Write w = 1/~d. We
have, for an infinite sequence of values of u:

00

IT Icos 7rU'1]h~h-l • ~kdl > a" (h .:.. 1, 2, ..., d),
k=O

and from this we deduce, by the same argument 'as in Chapter IV, the existence
of a real number A rr= 0 such that

L sin2 7rA'1]h~h-lWn<. 00 (h = 1, 2, ..., d).
, ,.

We know that from this condition it follows that (1) w ES, a condition which
we shall suppose to be fulfilled (since we know that we have the necessary
condition ~-l E S, which implies ~-d E S), (2) the numbers

A'1]1, A'1]2, •• :, A'1]d

all belong to the field of w (hence to the field off), = ~-l). Since '1]d = 1 - ~,

it follows that

.'1]1, '1]2, • • .', 1]d

are algebraic numbers of the field of 8.
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Summing up our results we get:

THEOREM. If the homogeneous set E is a set of uniqueness, then:

I. I/ ~ is an algebraic integer (J of the class S.
2. The abscissas 1]], ••• , 1]d are algebraic numbers of the field of (J.

We proceed now to prove that the preceding conditions are sufficient in order
that E be a U-set.

3. Sufficiency of the conditions

THEOREM. The homogeneous set E whose points are given by (1), where I/~ = (J
is an algebraic integer of the class S and the numbers 1]1, ••• , 1]d are algebraic
belonging to the field of (J, is a set of the type H(n) (n being the degree of (J), and
thus a set of uniqueness.

PROOF. Let a be a rational positive integer such that a1]l, a1]2, ..., a1]d are
integers of the field of (J. Denote by

"" (1) ""(n-l)
\A. ,..., \A,.

the conjugates of (J and by

W ·(1) w·(n-ll (J' - I 2 d)J , ••• , J - , , ••• ,

the conjugates of 1]j. Denote further by A an algebraic integer of the field of (J,
whose conjugates shall be denoted by

Writing (1) in the form

we have, if m is a natural integer > 0,

n-l

Aa(Jm1]j + L: jJ.(i)a . aWmw/i) =° (mod 1).
i=l

Thus, x E E being fixed, we have always

Aa(Jmx = Aa (Em+l + ... + Em+N) + Aa (Em+N+l + ...) + R (mod 1),(J (IN (IN+l

where N > I is a natural integer to be chosen later on, and where, putting

M = max {I w/i} I, 1]j}
i,j

we have
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Just as in the case considered in Chapter VI, Minkowski's theorem leads to
the determination of the positive algebraic integer A of the field of () such that

AaM I
(}N(() - I) < 2n(d+ 1)(Nlnl+l'

I J.Li I 1
Ma 1 _ Ia(i) I < 2n(d+ 1)(Nlnl+l'

provided that
N

[2n(d + l)n+1J-n > , .11 (}-N.

Here .1 is a certain nonvanishing determinant depending on the set E and on (),
but not on N. This condition can be written

(}N > .1(d+ I)N[2n(d+ l)Jn

and will certainly be satisfied for a convenient choice of N, since () > d+ I.
The numbers Aand N being now thus determined, we shall have, for all m and

all x E E,

'Aa(}mX - Aa (EO+! + ... + EotN) I< 2(d+ :)(Nlnl+l (mod I).

The argument is now identical with the one of Chapter VI. It is enough to
observe that

[
1 In 1

(d+ I)N+n-l (d+ 1)(Nlnl+l = d+ 1

in order to see that there exists in the torus 0 < Xj < 1 (j = 1, 2, ..., n) a "cell"
free of points whose coordinates are the fractional parts of

the natural integer k > 0 and the point x E E being arbitrary.
Since () E S, we have Aa(}m = Cm + Om, Cm being a rational integer and Om~ O.

The remainder of the proof is as before, and we observe that the vectors

Vk(Ck+!, Ck+2, •••, Ck+n)

form a normal family.

EXERCISE

The notion of symmetric perfect set with constant ratio of dissection (de­
scribed at the beginning of Chapter IV) can be generalized as follows.

Divide the fundamental interval (say [0, IJ) in three parts of respective lengths
~l' 1 - 2~1' ~l (where 0 < ~l < i). Remove the central part ("black" interval)
and divide each of the two "white" intervals left in three parts of lengths pro-
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portional to ~2, 1 - 2~2, ~2 (0 < ~2 < i). The central parts are removed, and the 4
white intervals left are divided in parts proportional to ~3' 1 - 2~3, ~3 (0 < ~3 < ~).

We proceed like this using an infinite sequence of ratios ~h ~2, •••, ~n, and we
obtain a symmetric perfect set with variable rates of dissection E(~h , ~n, ...).

Suppose now that the sequence {~n} i is periodic, i.e., that ~p+j = ~j for all j,
the period p being a fixed integer. Prove that the set E(~h ..., ~n •••) can be
considered as a "homogeneous set" in the sense of Chapter VII, with a constant
rate of dissection

x = ~l ••• ~p.

Using the results of this chapter, prove that this set is a set of uniqueness if and
only if the following hold.
1. X-I belongs to the class S.

2. The numbers ~h ••• , ~p are algebraic and belong to the field of X.



SOME UNSOLVED PROBLEMS

1. The following problem has already been quoted in Chapter I:
Suppose that the real number () > 1 is such that there exists a real "A, with

the property that 1I "A,(}n " ~ 0 as the integer n increases infinitely (without any
other hypothesis). Can one conclude that () belongs to the class S?

Another way to state the same problem is:
Among the numbers () > I such that, for a certain real "A,, 11 "A,()n 11 ~ 0 as

n~ 00, do there exist numbers () which are not algebraic?

2. Let us consider the numbers T of the class T defined in Chapter Ill. It
is known that every number () of the class S is a limit point of numbers T (on
both sides). Do there exist other limit points of the numbers T, and, if so,
which ones?

3. It has been shown in Chapter IV that the infinite product

00

r(u) = IT cos 7rU~k
k=O

is, for 0 < ~ < !, the Fourier-Stieltjes transform of a positive measure whose
support is a set E(~) of the Cantor type and of constant rate of dissection ~.

But this infinite product has a meaning if we suppose only 0 < ~ < I, and in
the case! < ~ < 1 it is the Fourier-Stieltjes transform of a positive measure
whose support is a whole interva1.t We know that r(u) = 0(1) for u~ 00, if
and only if ~-l does not belong to the class S. Let

00

r1(u) = IT cos 7rU~lk,
o

00

r2(u) = IT cos 7ru~2k
o

where ~l-l and ~2-1 both belong to the class S, so that neither r1(u) nor r 2(u)
tends to zero for u = 00. What is the behavior of the product

as u~ oo? Can this product tend to zero? Example, ~l = t, ~2 = ,".

This may have an application to the problem of sets of multiplicity. In fact,
if ~l and ~2 are small enough, r 1r 2 is the Fourier-Stieltjes transform of a measure
whose support is a perfect set of measure zero, namely E(~l) + E(~2).t If
r 1r 2~ 0, this set would be a set of multiplicity.

t See Kahane and Salem, Colloquium Mathematicum, Vol. VI (1958), p. 193. By E(~l) + E(~2)

we denote the set of all numbers Xl + X2 such that Xl E E(~l) and X2 E E(~2).
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4. In the case! < ~ < I, the measure of which r(u) is the Fourier-Stieltjes
transform can be either absolutely continuous or purely singular.t Determine
the values of ~ for which one or the other case arises. (Of course, if ~-1 E S,
r(u) ~ o(l) and the measure is purely singular. The problem is interesting
only if ~-1 does not belong to the class S.)

t See lessen and Wintner, Trans. Amer. Math. Soc., Vol. 38 (1935), p. 48.



APPENDIX

For the convenience of the reader we state here a few definitions and results
which are used throughout the book.

We assume that the reader is familiar with the elementary notions of algebraic
numbers and algebraic fields. (See, e.g., [5].)

1. An algebraic integer is a root of an equation of the form

xk+ alxk- 1 + ... + ak = 0,

where the aj are rational integers, the coefficient of the term of highest degree
being 1.

If a is any algebraic number, there exists a natural integer m such that ma
be an algebraic integer.

If {} is an algebraic integer of degree n, then the irreducible equation of degree
n with rational coefficients, with coefficient of x n equal to 1, and having {} as
one of its roots, has all its coefficients rational integers. The other roots, which
are also algebraic integers, are the conjugates of {}.

Every symmetric function of {} and its conjugates is a rational integer. This
is the case, in particular, for the product of {} and all its conjugates, which proves
that it is impossible that {} and all its conjugates have all moduli less than 1.

The algebraic integer {} is a unit if I/{} is an algebraic integer.

2. If (in a given field) f(x) is an irreducible polynomial, and if a root ~ of
f(x) is also a root of a polynomial P(x), thenf(x) divides P(x) and thus all roots
off are roots of P.

3. If an algebraic integer and all its conjugates have all moduli equal to I,
they are all roots of unity (see [9J).

4. Let R be a ring of real or complex numbers such that 0 is not a limit point
of numbers of R. (R is then called a discontinuous domain of integrity.) Then
the elements of R are rational integers or integers of an imaginary quadratic
field (see [9J).

5. There exist only a finite number of algebraic integers of given degree n,
which lie with all their conjugates in a bounded domain of the complex plane
(see [9J).

6. Let P(x) be a polynomial in a field k. Let K be an extension of k such
that, in K, P(x) can be factored into linear factors. If P(x) cannot be so factored
in an intermediate field K' (i.e., such that k C K' C K), the field K is said to be
a splitting field of P(x), and the roots of P(x) generate K.

Let ab ..., an be the roots of P(x) in the splitting field K = k(al, ..., an).
Each automorphism of K over k (i.e., each automorphism of K whose restriction
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to k is the identity) maps a root of P(x) into a root of P(x), i.e., permutes the
roots. The group of automorphisms of K over k is called the (Galois) group
of the equation P(x) = O. This group is a permutation group acting on the
roots al, •••, an of P(x).

If P(x) is irreducible in k, the group thus defined is transitive.
See, for all this, [lJ.

7. Uniform distribution modulo 1 of a sequence of numbers has been defined
in Chapter I.

A necessary and sufficient condition for the sequence {Un} i to be uniformly
distributed modulo 1 is that for every function [(x) periodic with period 1 and
Riemann integrable,

1· f(UI) + ... +f(un ) f.lf()dlm = x x.
n-+oo n 0

H. Weyl has shown that the sequence {Un} is uniformly distributed modulo 1
if and only if for every integer h ~ 0,

In Rp (p-dimensional Euclidean space) the sequence of vectors

is uniformly distributed modulo 1 in the torus Tp, if for every Riemann integrable
function

[(x) = f(xt, •.., x p
),

periodic with period 1 in each xi, we have

1· f(Vl) + ... +f(Vn ) f, fi()dlm = x x,
n-+oo n Tp

the integral being taken in the p-dimensional unit torus Tp.
H. Weyl's criterion becomes

where (HVn) is the scalar product

and hI, ..., hn are rational integers not all O.
If Wl, W2, ••• , Wp , and 1 are linearly independent, the vector (nwl, ..., nwp ) is

uniformly distributed modulo 1 (see [2].
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8. Kronecker's theorem. See [2]. In the form in which we use it in Chapter
III it may be stated as follows:

If

are linearly independent, al, a2, ..., ak are arbitrary, and N and E are positive,
there exist integers

such that

InOj - pj - aj I < E (j = 1, 2, ... , k).

(This may be considered as a weak consequence of the preceding result on
uniform distribution modulo 1 of the vector (nOI, ..., nOk).)

9. We had occasion to cite Minkowski's theorem on linear forms in Chapters
I, Ill, and VI. We restate it here as follows.

Let

Tt

Ap(x) = L aqPxq (p = 1, 2, ..., n)
q=1

be n linear forms of the n variables Xl, •.., X n where the coefficients are real and the
determinant D of the forms is not zero. There exists a point x with integral co­
ordinates not all zero, Xl, ••., X n such that

provided that 01 ... op > ID I.
The result holds if the coefficients aq

P are complex, provided that complex
forms figure in conjugate pairs, and that the two op's corresponding to a con­
jugate pair are equal.

The theorem is usually proved by using the following result. If K is a convex
region of volume V in the Euc1idean space Rn with center of symmetry at the
origin and if V> 2n , the region K contains points of integral coordinates other
than the origin. An extremely elegant proof of this result has been given by
C. L. Siegel, Acta M athematica, Vol. 65 (1935).
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