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Abstract The equivalence between Hausdorff measure induced by natural covering net and Hausdorff measure
in usual meaning has been obtained for one-dimensional symmetric Cantor sets. As an application, the Hausdorff di-

mensions of such sets are determined.
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Let & be a collection of subsets of interval Eq = [0, 1] such that for any z € E; and € >0,
there exists [ € F with £ € I and | I| <{e, where | I| denotes the diameter of I. % is called a
net for Eg.

Given EC[0,1] and «, €>0, define

H: HE) = inf{Z | I, |a;ECUI,-,I,-6?, | L, 1<e},

HY(E) = limH: E),
dimy #(E) = infie > 0; H%E) = 0{.

H%(E) and dimg, 4( E) are called a- dimensional Hausdorff measure and Hausdorff dimension of

E with respect to ¥ respectively. If # consists of all subsets of E,, then we just get the Hausdorf{
measure and Hausdorff dimension in usual sense.

Now let %, % be two nets for Eg, and ECE Then %, % are called equivalent for E if

there exist two positive constants, ¢y, ¢z, such that for any 0< a1,

c\Hy (E) < H3 (E) < ¢, H3.(E).

In this case, it is easy to see that the Hausdorff dimensions induced respectively by these two nets
for E are equal.

We have pointed out that the net related to Hausdorff measure in usual sense just consists of
all subsets of E,. Thus if we want to calculate the Hausdorff dimension of E by the definition,
we must consider all possible covers for set E. But if we can find a well-constructed set equivalent
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to the above net, then we might simplify the calculation for measure and dimension. For more
discussions about net measure, please refer to references [1—4].

In this paper we discuss the net measure properties of symmetric Cantor sets, the Hausdorff

dimension of which, as an application, can be determined.
Now we begin to define symmetric Cantor sets as follows.

Let /= | n,},>,be a sequence of positive integers and let €= {c,! be a sequence of positive
real numbers satisfying 7,222, 0< ¢, <1 and n,c, <1 for all %.

Now we construct E; from Ey. E; is a union of z, closed subintervals of E satisfying: (i)
these n; intervals have the same length ¢;; (ii) the gaps between these intervals are the same;
(iii) the leftmost interval has the same left end-point with E;. The rightmost one has the same

right end-point with Ey. These n; intervals are called fundamental intervals of order 1.

Let % denote the collection of all fundamental intervals of order 1. We will define E,, E3,
-=-by induction. Now assume that E, is defined, and let %, be the collection of all fundamental in-
tervals of order k. Letting I € %, be any fundamental interval of order k., we replace E; by I,

and repeat the process of constracting E from Ey;. We get E,,; when I runs over ¥ (noticing

k+1
that the length of each fundamental interval of order 2 +1is ¢, | I| = H1 ).
s

Finally, let E = QOEk and call it a symmetric Cantor set determined by the sequences A, ¢
k=

Denote E = E(4, %). Symmetric Cantor sets are very important Fractal sets, some special types
of which had been studied by Kahane et al. (51 Lee et al .18, Moorthy et al.!") and Hua Sul?!.
The Hausdorff dimensions of some special cases have been determined. But the Hausdorff dimen-
sions of general cases have not been obtained up to now. In this paper we will solve this problem
by the net measure techniques.

1 The net measure properties of symmetric Cantor sets

Let %, denote the-collection of all subsets of E;. As we have discussed above, the net measure tech-
nique consists in finding a relatively simple net which is equivalent to % . From the definition of
symmetric Cantor sets, we know that {%,},>,is a simple and natural net. We will show that it is
equivalent to %, by using some intermediate nets. Thus it will be easy to determine the dimensions
of symmetric Cantor sets.

Now we give some definitions and notations as follows.

Let ¥= {v;| be a set sequence ({inite or countable infinite). Let AC E, and define

A n"f/= !A n U,: Y E“V},H“V”S = E|'Uj‘x,"1/+1‘ = i‘U]‘f'l‘Ev]en”

v, €Y
t]

where v; t x=1{y+ z:y€ v;}. Let %= I1:1= OIII,IiG%,lng'nk, and 3 J €%, _ such

that ICJ !}, i.e. any element of G, is a union of some fundamental intervals of order # which are
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generated from the same fundamental interval of order £ — 1. Let ¥= kL>J1% .

Lemma 1. The nets %, and ¥ are equivalent .

Proof. YV0<s<1, H}O(E)QH‘y (E) since ¥ is a sub-collection of %,. So we only need to

show that there exists ¢ >0 such that
H, (E) < Hy(E). (1)
Let I be an open sub-interval of Eg, I(1E#@. Then there is only one positive integer %

such that I contains at least one fundamental interval of order £, but no fundamental interval of

order 2 — 1. Hence I intersects at most two fundamental intervals of order 2 —1.

If I intersects two fundamental intervals of order k¥ —1, we denote them by J,;, J,. Let I,
=J,NI,1,=J,NI. Since | I{|*<<II1°, | [,]°<<|I]°, we have

II(XZ%(Ulls‘F“z}S)- (2)

Let G(1,) be the union of fundamental intervals of order 2 which intersect I;, i =1,2. Then
. 8
G(I)EH, and |G| +2.I=Ilci. Since one of I; and I,, or both I, and I,, contain a

fundamental interval of order %k, we can assume that I, is the interval. So

k
G <L+ 2]]e) <Gl L]). (3)
i=1
If I, contains also one fundamental interval of order %2, then by the same argument, we have

P G(I) 1< (31 [ 1),

1 =36+ |6 ],
If I, contains no fundamental interval of order £, then
3
IG(Iz)l = HC{Q lG(I1)|.
1=1
So by egs. (2) and (3), we have

;115;%1|G(11)|S>%:()G(11) S G|,

So we always have

ms>¥(]c(11)1‘+ |G(12)}S)>é()c(11) T |G ). (4)
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When I intersects only one fundamental interval of order £ — 1, by similar discussion, we

have
[ 1]*=371G(I)]*, G(I) € G,. (5)

By the above analysis, we can see that INEC(G(I;)NEYU(G(I,)NE), or (INEC
G(I)NE), and |G(I}) I, |G(I,)I<6]1].

Now let I=1{I;| be a 8-cover of E. By the above discussions and egs. (4) and (5), we may
find a 668-cover ¥* = { g;1 € ¥ such that

s

l1] =519

So letting c=é, we obtain (1). Q.E.E.

Now we consider a fundamental interval I € %, _;, and denote the n, fundamental intervals
of order & generated from I by I, (I), ", I, ,,‘(I) in order. Let m be an integer, 1<<m < n,,

and let
m=gn+r, 0<r<m,q€N.
If »>0, we construct g + 1 subsets of I as follows.

Let W, ,..1(I) be the closed interval which has the same left endpoint with I, ;(I) and the
same right endpoint with I, ,(I). W, , = U A.

Let W,, ., ,(I) be the closed interval which has the same left endpoint with Iy (; 1), +1(I)
and the same right endpoint with I, .., (I). W, , = N U A.

A€W, ﬂ.’ik

RN

Let Wy, o, 4+1(I) be the closed interval which has the same left endpoint with Iy, (g +1)(I)

and the same right endpoint with I, ., +,(I). Wy , .1 = U A.
AEW N,

E,om,g+1 Tk
PUt"Wk,m(I)z {Wk,m,j’1<j<q+1, nWle,m: "v: veﬂWk.m(I)’ Ie%_ll.
We see that %, ,, is a cover collection of E,, and for any k, m, %, ,, 5.

If =0, in the same way, we construct g + 1 subsets of I except that the last one is empty.

Lemma 2. There exists c >0 such that for any cover collection v (Z%) of E, there exists
a cover collection W, ,, such that ¥ 0<s<1,

190 = e ll e nll -

Proof. Let ¥= {v;| be an arbitrary cover subcollection of ¥, Then we can assume that ¥ is
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finite since E is compact. Assume that k; and %, are respectively the lowermost and highest order
or fundamental intervals contained in the same v;.

Put
D, = {v;: v; € ¥ v; contains at least one fundamental interval of order &, ;

D,=1I: 16%1, there exists no v; € ¥ such that IC v;};

D= Dl U D2 .
The above definitions imply that D is a cover collection of Ekl‘ For p€ D, let

lp!I°
# p(ky)
h(p,s) =

“ P ﬂ ,1/”59 lfP 6 DZ’

, if p € Dy,

where # p(k,) denotes the number of fundamental intervals of order £, contained in p. By the
construction of %, we know that if v; €%, and v; & D;, then v; must be contained in some funda-
mental interval of order k;. Assume that 2( p, s) attains to its minimum at p = py (this is al-
ways possible since ¥ is finite) .

(i) po€D;.

In this case, by the above analysis we have

Il =231l + 2 p Nl

p€D, PED,
= D #p(kDR(p,s) + D h(p,s)
P€D; PED,
= D #p(k)R(poss) + 2 h(poss)
p€ED, PED,
= (2 #p(k) + #D;)h(poss).
pGDl
Notice that ( # p(ky) + # D) is just the number of fundamental intervals of order %#;, thus it

,1;6D1

equals n;n,'-n,. Since

Ny
— 1 P 5
nklh(P()ys) #Po(/h){ 0‘ ’
by direct calculation, we have
s 1 s
N R A N TRIRE I (6)

(i) po€ D;.

In this case py is a fundamental interval of order %;. Suppose that the distances between the
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left endpoints of 77, * n, fundamental intervals of order £, and the left endpoint of p, are re-
L Then ¥* C ¥, Since pq

M contains no fundamental interval of order £ — 1, any element of ¥ contains no fundamental in-

terval of order 2. Thus for V .- €%", H v "

spectively ¢y, t2,"*s 2, o .., - Denote v ={pNV+ tiilgignlnz...n

172 k

= A po,s). So by the calculation similar to that
of (i), we have

4

I0° = (117 )r(po,s) =9I . (7)

i=1

We have pointed out that ¥* C%, and any element of ¥* contains no fundamental interval of
order £;. Noticing that %, is the highest order of fundamental intervals contained in some ele-
ments of ¥*, we may repeat the discussion of (i), and by formulae (6)and (7), after a finite
number of steps, we may find £*, k;<Ck "< k,, and positive integer m such that

s 1 s
(R R/ I

Lemma 3. There exists a positive constant ¢ >0, such that for any positive integer k, m=
2 and 0<s<1, thereis

[ Weom ' =l Facr .

Proof. Suppose that I is an arbitrary fundamental interval of order %.-1, and let n, = gm +
ry 0r<m. Then n,<(g+1)m. Let 8(m) be the diameter of the union of m adjacent fun-
damental interval of order £. Then &(m ) is bigger than the gap between any two adjacent funda-
mental intervals of order 2. Thus we have

[ 11<<2(qg+1)8(m).

LT 1P<<2%(g +1)°(6(m))°  <<4q(6(m))°.
Hence

I Fea I <4l W I

Remark 1. Y m=1, thenW, ,, =W, =%, and | %, . |"= | % |".

Theorem 1. Let E be the symmetric Cantor set determined by the sequences | ny!,>,

{eptp=1, Then

k k
clim ] net < B (E) < lim [] nie/,
T l;_ i=1

peoo i=1 oo IT

where 0<Us<{1, and c is an absolute positive constant .

Proof. Note that for any 2 == 1, and %, is a cover of E. So
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k
H/(E) <lim | %" = lim [ nies.

kh—> 00 b t=1

Now suppose that ¥ is an arbitrary &-cover of E. Then according to Lemmas 1—3 and Remark
1, there exist positive constant ¢ and positive integer % such that

Il =l #

s k
, i.e. HH(E) = ¢ liLanicis.

=1

So if & is small enough, we have .’1’ ‘S>c ll_rn’%e

k=00 k—> 0

Theorem 2. Let E be the symmetric Cantor set determined by the sequences | my},>1,
i Cp } p>21 - Then

lognin, - n
dimpE = lim Jogn nyttny

ko

—logcicarci”

. . logniny - n )
Proof. Given any s> lim—— ————— loge, e : , there exists a subsequence {£,};»1, such that s>
— 16277 C
k>0

logn;ny " n,

k k
—————— . So Il n,e<<1. Thus lim Il n,c<C1. Hence by Theorem 1, H'(E)<{1. So
—logcicarey =1 7 i1

dimg(E)<(s. Thus

k—>c0

logniny - n,

dimy(E) < lim

k=0

— logcicyrcy

By similar discussion, we may prove the converse inequality.

Given ECR, E is called s-set if 0< H'(E )< . According to Theorems 1 and 2, we have

3
Corollary 1. The symmetric Cantor set E is s-set if and only if 0<lim Il nici< oo, and s =
=1
Y
. logninyomy
lim—————.
— —logcicy ey

>0
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