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To model turbulence, Mandelbrot [6, 7] introduced a statistically self-similar
family of random Cantor sets in Rd. Since that time this family has got at least
three names in the literature: fractal percolation, Mandelbrot percolation
and canonical curdling, among which we will use the first one.

In the case of the fractal percolation random sets, on the n-th level (1 ≤
n < ∞) of the construction, we consider some fixed (exponentially small) cubes
whose positions are deterministic and the randomness comes from the fact that
with some probabilities we retain or discard these cubes. In our second example
of random Cantor sets we apply a construction which is similar to the construc-
tion of deterministic self-affine sets but in each step of the construction, we
add a random translitional error. Let me call these sets randomly perturbed

self-affine sets. Below we show an example of fractal percolation set and
an example of randomly perturbed self-affine set:

Example of a fractal percolation set Given a probability say p = 0.8
and a coin which lands on tail with probability p when it is flipped. We partition
(mod 0) the interval I = [0, 1] into 3 sub intrevals Ik :=

[
k
3 ,

k+1
3

]
, k = 0, 1, 2

and we flip the coin independently 3 times for each of these intervals. If the
coin lands tail we retain the corresponding interval, otherwise we discard it.
Assume we retained intervals I0 and I1. The discarded interval I2 is erased
completely. Then we repeat the same process independently in intrevals I0 and
I1 to obtain some retained second level intervals of length 1/9. Then inductively,
in each retained interval we repeat the same process independently ad infinitum
or until we end up with no intervals at all.

Example of a randomly perturbed self-similar set Let Si(x) := 1
3x+ i

where i = 0, 1, 3. Then the interval I :=
[
0, 9

2

]
satisfies Si(I) ⊂ I for all

i ∈ A := {0, 1, 3} The self-similar set which corresponds to the self-similar IFS
(Iterated Function System) S = {S0, S1, S3} is

Λ :=

∞⋂
n=1

⋃
(i1,...,in)∈An

Ii1...in , (1)

where
Ii1...in := Si1 ◦ · · · ◦ Sin(I) (2)

We obtain a randomly perturbed self-similar set from this if we fix a small ε > 0,
we write U for the uniform distribution on the interval (−ε, ε) and instead of
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the deterministic interval Ii1...in we consider its randomly perturbed sister:

Iyi1...in := (Si1 + yi1) ◦ (Si2 + yi1i2) ◦ (Si3 + yi1i2i3) ◦ · · · ◦ (Sin + yi1...in)(I), (3)

where y = {yj}j∈⋃∞
n=1 An is a sequence of i.i.d. random variables yj

d
= U . The

randomly perturbed self-similar set corresponding to the random perturbation
y is

Λy :=

∞⋂
n=1

⋃
(i1,...,in)∈An

Iyi1...in , (4)

We place emphasis on the geometric measure theoretical properties ( dimen-
sion of projections and slices, existence of interior points in the projections,
rectifiability) of the random sets under consideration.

Part I

(1) The intorduction of the tools we use from the theory stochastic processes:
Branching processes and some elements of Large deviation theory.

(2) Fracatal percolation random sets: the construction, elementary properties
and the dimension formula.

(3) Chayes, Chayes, Durrett theorem about the connectivity property of Fractal
percolation process [2], [5] .

(4) The orthogonal projections of Fractal percolation sets I. [10], [9].

(5) The orthogonal projections of Fractal percolation sets II. [8], [11].

(6) Frcatal percolation is unrectifiable [1].

(7) Frcatal percolation peocess on Sierpinski carpet and on Menger sponge.

Part II

(1) The definition, dimension and measure of randomly perturbed self-affine
sets. The self-affine transversality condition. [4].

(2) Generalized Transversality Condition for dominated triangular C1 IFS. [3].

(3) The existence of interior points in randomly perturbed self-similar sets.

References
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