CHAPTER I

BASIC CONCEPTS AND THEOREMS IN THE
THEORY OF TRIGONOMETRIC SERIES

§ 1. The concept of a trigonometric series; conjugate series

A trigonometric series is the name given to an expression of the form
QAo X .
5t Y (a, cosnx + b, sinnx), (.n
n=1

where a, and b, are constants (n = 0, 1, 2...), known as the coefficients of the series.}

If such a series converges forall xin — 0 < x < + o0, then it represents a function
possessing a period of 2. Therefore, if a function is to be represented by a trigono-
metric series, either periodic functions with period 27 are considered or a function is
taken which is given in an interval of length 2% and is then expanded periodically,
that is, it is required that f(x + 2x) = f(x) for any x.

Trigonometric series play a prominent role not only in mathematics itself but also
in very many of its applications. But before we discuss this role, we will mention
first the connection between trigonometric and power series. If we consider the series

i Ca 2", (1.2

where ¢, = a, — ib,, ¢ = ao/2 and we suppose that z = re'*, then the series (1.1)
is no different from the real part of series (1.2) on the unit circle; the purely imaginary
part of the series (1.2) for z = €!* is the series

o0

(— b, cosnx + a,sinnx), (1.3)
t

n=

which is usually called the series conjugate to series (1.1).

If it is assumed that the constants ¢, are bounded then the series (1.2) represents an
analytic function inside a unit circle, that is, for z = re'*, where 0 <r < 1 and
0 < x < 2x; therefore its real and imaginary parts

Qo

2

u(r, x) = + Y (a,cosnx + b, sinnx)r"
n=1

+ The reason why the free term is written as aq/2 will become clear later (see § 4).
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and
0

v(r, x) =) (— b, cosnx + a,sinnx)r"
n=1
are conjugate harmonic functions; whence is derived the name ‘“conjugate series”.
The study of the behaviour of conjugate series is no different from an investigation
of the behaviour of conjugate harmonic functions on the circle |z| = 1.

§ 2. The complex form of a trigonometric series

It is often more convenient to give the trigonometric series

o 2 .
- T Y (a,cosnx + b, sin nx) 2.1
n=1

a different form. Thus, from the well-known Euler’s identity

e'* = cosx + isinx

it follows that
eix + e—ix . eix — e—ix
cosx = Lz—; sinxy = —————

so that we can write series (2.1) in the form

%(l +n21 (an gin® +2e"”'" b, einx 2_ ein® >,
whence, supposing that
Co = %, Cy = ﬁ:zl—b", C_p= Eﬁ;;—l—bf‘, 2.2)
we see that the series (2.1) takes the form
n=+o
Y. cpe™. (2.3)

This is the so-called complex form of the trigonometric series. The partial sum of
series (2.1), that is, ‘
a, n
Sn(x) = 7" + Y (ax coskx + by sinkx),
k=1
now takes the form

k=-+n
Sa(x) = Y, e, 24

k=—n
that is, the convergence of series (2.3) must be understood as the tending to the limit
of sums of the form (2.4).

Some problems are concerned with trigonometric series of the form (2.3), the
coefficients of which are any complex numbers. If it is assumed that the numbers a,
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and b, in series (2.1) are all real, then from formula (2.2) it is seen that the numbers ¢,
and c_, are conjugate complex numbers, that is, ¢_, = ¢, (the symbol & always indi-
cates the number conjugate to a).

§ 3. A brief historical synopsis

The possibility of representing a function by a trigonometric series was first con-
sidered by Euler in 1753 in connection with the work by Daniel Bernoulli on “Vibrating
Strings” which had appeared at that time.

If a string, fixed at both ends, is disturbed from its state of equilibrium and is allowed
to vibrate freely without being given any initial velocity, then Bernoulli affirmed that
the position of the string at time 7 is determined by the formula

© . #x
y=2a, smp-7~cospkt,
r=1

where /is the length of the string and & is some coefficient which depends on the den-
sity and tension of the string. The coefficients «, are arbitrary constants and it is
possible to choose them so that the initial condition is satisfied, namely, the require-
ment that initially the string occupies a certain given position.

Euler noticed that this assertion by Bernoulli leads to a paradoxical result, ac-
cording to the views of mathematicians of that time. Indeed, if y = f(x) is the initial
position of the string, then assuming ¢ = 0, we should obtain

() =Y o, sinp
p=1 !

that is, the “arbitrary” function f (x) can be expanded as a sine series. However, Euler
and his contemporaries divided the curves into two classes: those that they called
“continuous’ and the others “geometrical”. In contrast to the terminology adopted
today, a curve was named “continuous” if y and x were connected by some formula:
on the other hand, a geometrical curve was the name given to any curve which could
be drawn “free-hand”. It is evident from all this that if the curve is given by a formula,
then being determinable in some small interval, it is automatically determinable every-
where elsef. Therefore they did not doubt that the second category of curves was
wider than the first, since they could not consider, for example, a broken line to be
“continuous”, but merely composed of sections of continuous lines.

If an ““arbitrary” function could be expanded as a sine series, i.e. represented by a
formula, this would signify that any kind of “geometrical” curve is a “continuous”
curve which appeared to be incredible. In particular, D’Alembert noticed that the
most natural method of disturbing a string from its state of equilibrium is to take
hold of some point on it and pull it upwards, so that it takes up a position represented
by two straight lines forming an angle between them. D’Alembert considered that
a curve of this nature could not be the sum of a sine seriestt.

+ This property is inherent in analytic functions.

11 For the result of the argument between Euler and D’Alembert concerning the definition of an
““arbitrary function”, which arose in connection with the solution of the problem of the vibrating
string, see the extremely interesting report on “Functions” by N.N.Lusin!4] (it should also appear
in Vol. III of the Collected Works of N.N.Lusin).
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The problem of what functions can be represented by trigonometric series arose
again considerably later in Fourier’s researches. In connection with the study of the
problem of heat transfer he was confronted with the following problem: let the given
function be

-1 in —-a<x<0,
f(x)‘: 1 in O0<x<un.

It is required to represent it in the form
0
Y o, sinnx. (3.1
n=1

Fourier indicated formulae with the help of which o, can be determined so that series
(3.1) can have f(x) for its sum. In this way, it is a series of form

4 [ sinx sin3x sin(n + 1)x ]

T T3 Pt Tanya '

414

Fourier did not prove that the series is bound to converge to the function f (x), but
this question was answered in the affirmative by later investigations. In any case it is
important that Fourier first solved the problem of how to determine the coefficients
of a trigonometric series for it to be able to possess a given function as its sum. It is an
entirely different question whether this series does indeed converge and does really
possess this function as its sum.

§ 4. Fourier formulae

Let us assume that the function f(x) is not only the sum of a trigonometric series
but also that this series converges uniformly in —z < x < 7; then its coefficients can
be determined very easily. This follows simply by multiplying

£G) =22+ 3 (ay cosnix + by sinnx)

n=1

by cos kx or by sink x, by integrating it between the limits — w to + 7z (which is valid)
and noting that

}1 1

fcosmx cosnxdx =0, m+#n,
—7

21

f sinmxsinnxdx =0, m#n,

-7

@.1)

T

fcosmxsinnx dx=0, m#n and m=n,
—7

F:4 k24

_fcoszmx dx = fsinzmx dx = m.

- —7
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As a result we obtaint
L[ L
ay = = ff(x) cosnxdx; b, = - ff(x) sinnx dx. 4.2)

Formulae (4.2) are called Fourier formulae,t1 the numbers a, and b, are Fourier
coefficients and finally the series, the coefficients of which are determined by Fourier
formulae derived from the function f(x), is named the Fourier series of the function
f(x). We will denote it by o(f).

§ 5. The complex form of a Fourier series

If the series representing f(x) is given in a complex form (see § 2)}tT, i.e., if we
suppose that

n=-+o

F) = 3 ce™, (5.1)

n=—0u0

then the coefficients ¢, are determined by the formulae

¢, = % f fe™dt (n=0,+1,..), (-2)

which can be obtained either by starting from equalities (2.2) and substituting the
values for g, and b, from the Fourier formulae or in a similar manner to that by which
the Fourier formulae themselves were produced. Namely, by supposing that

=4

fx = 3 ce*. (5.3)

k=—o0

where the convergence is uniform, multiplying both sides of equality (5.3) by e *** and
integrating term by term, we find that

k=-c0 N
=3 ckf el temxgy

k=—00 —Tr

[ f)eidx
But

= 0, if k#n,
{’ iesn (5.4)

i(k—n)x —_—
fe dx = 27, if k = n.

—n

t The free term of the series must be written in the form a,/2 for ag to be obtained from a, when
n=0.

11 Strictly speaking, these formulae were already known to Euler, but Fourier began to use them
systematically; therefore they are traditionally called Fourier formulae and the corresponding series
Fourier series.

111 For references to the text or formulae from the same chapter, the number of the chapter is
omitted.
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whence

[ fx)e ™ dx = 2zc,,

-7

which proves the validity of formula (5.2).
The numbers ¢, are called the complex Fourier coefficients of the function f(x).

§ 6. Problems in the theory of Fourier series; Fourier-Lebesgue series

In §§ 4 and 5 we have solved only the problem of how the coefficients of a trigono-
metric series should be determined if we know that it converges uniformly to some
function f(x). It was shown that in this case the series possesses coefficients deter-
minable by Fourier formulae, that is, it is a Fourier series of f(x).

However, for the function to be the sum of an uniformly convergent series of
continuous functions, it is necessary that it be continuous. Therefore, it could appear
that if it is desired to represent a function by a Fourier series, we must confine ourselves
to the case when it is continuous. We will see that in fact the theory of Fourier series
embraces a very much wider class of functions. But first of all we must define more
exactly what we understand by Fourier series.

Integrals figure in Fourier formulae. We know that the concept of an integral,
starting with Cauchy, has widened, so that an increasingly large class of integrable
functions has developed. In this book we will always understand by the class of
“integrable functions” those integrable according to Lebesgue. These functions, as is
known, are called summable; the series set up for them are named the Fourier-
Lebesgue series. For brevity’s sake we shall simply say “Fourier series” but at the same
time realise that the series being considered are always summable.

Let £ (x) be summable in [— 7, 7z]. Then it is always possible to determine for it the
numbers a, and b, from Fourier formulae and to set up a series which we will name
the Fourier series for this function and write

f(x) ~ % + > (a,cosnx + b, sinnx) 6.1)
n=1
or
a(f) = % + Y (a,cosnx + b, sinnx). (6.2)
n=1

The sign ~ indicates that we established this series in a purely formal manner,
starting from f(x) and using Fourier formulae, but we know nothing of the con-
vergence of this series. A whole succession of problems arises: should the Fourier
series converge (in the whole interval [— 7, 7] or at a given point or in a certain set)
and if so, does it converge to the function f(x) or not? In which cases will the con-
vergence be absolute, when will it be uniform? What can be said of divergent Fourier
series (is it possible to use them in any way for assessing functions?). These and many
other problems will be discussed in later chapters of this book.
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It should also be mentioned that there are cases when the trigonometric series is
given by its coefficients but we do not know whether it is a Fourier series of a certain
function or not. This is one of the very interesting but difficult problems of the theory
of trigonometric series.

§ 7. Expansion into a trigonometric series of a function with period 2/

Up until now we have considered the expansion into a trigonometric series of a
function with period 2. If the function f(x) has a period 2/, where / is some real
number, then performing a change of variable,

b

It
x = —
7
we obtain the function
It
o) =1(5),

which will also possess a period 2.
If we find its Fourier series

@) ~ %0— + ) (@, cosnt + b, sinnt),

where

1 1 .
4= fqo(t) cosntdt; b, = poy f(p(t) sinnzt dt,

then, reverting again to the variable x, we obtain

1 (lt dt
a, = — ff n)cosnt

1
1 Fod l
T f(x)cosnTxdx, n=01,...,

-1

]

. (7.1
b, = —17; ff(—:?t) sinntdt = -;— ff(x) sinnz;—xdx, n=12,...,
“x )
and therefore the function f(x) will correspond to the series
£ ~ % +”§l (a,, cosn %x + 5, sinn%c) , 7.2)

where the numbers a, and b, are determined by the formulae (7.1).

Everything that will be said later concerning the convergence of normal trigono-
metric series is completely applicable to series of the form (7.2).

Finally we consider the case when the function f(x) is not periodic. If it is defined
in a certain interval [a, b] where —% < a < b <=z (Fig.4) and is summable
in it, then it is possible to expand it into a trigonometric series thus: construct a

3a Baryl



50 BASIC THEORY OF TRIGONOMETRIC SERIES

function @(x) coinciding with f(x) in [a, 5] and defined in (-, @) and (b, ®) as
desired, provided that it is summable. Then assuming that ¢(x + 27) = @p(x) we
expand @(x) into a Fourier series. We assume that this series converges to ¢(x) at a
certain point x, @ < x < b; this means that its sum at this point will equal f(x).

4
f(x)
i ~ @ix) olx) s \.‘
I
| | | x
- a 0 b k4
FiG. 4

It is clear that on extending f(x) by various means outside the limits (a, ), we will
obtain various functions ¢(x). However, it will be proved subsequently (see § 33) that
the Fourier series of all these functions will behave identically, that is, if one of them
converges to f(x) at a given point, then all the others will also converge likewise.

§ 8. Fourier series for even and odd functions

If f(x) is even, i.e. f(—x) = f(x) and g(x) is odd, i.e. g(— x) = — g(x), then
f(x) g(x) is evidently odd; on the other hand, if f (x) and g(x) areboth even or both
odd, then f(x) g(x) is even.

It can be concluded immediately from this simple statement that for any even
function the Fourier series contains cosines alone and for any odd function sines
alone. Indeed, for any odd function ¢(x) and for any a > 0 we have

a

| 9(x)dx =0,

—a

and therefore for even f(x) we have

1
b, = ;z—ff(x)sinnxdx=0 n=12173"..1),

and for odd f(x) we have
1 21
@ = — ff(x) cosnxdx =0, (n=0,1,...).

Moreover, for any even ¢(x) and for any @ > 0 we have

a a

| o(x)dx =2 | p(x) dx.

[
--a 0
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Therefore, in conclusion: if f(x) is even, then

o(f) = a_; + 3 a,cosnx,
n=1
where
2
@y = — ff(x) cosnxdx;
0

if f(x) is odd, then

o(f) =) b,sinnx,
n=1
where

2 T
b, = = ff(x) sinnx dx.
K ‘

§ 9. Fourier series with respect to the orthogonal system

When we set ourselves the task of defining the coefficients of a trigonometric series
so that it converges to a given function f(x) we only considered a particular case of an
extremely general problem. In order to formulate this problem we introduce the
concept of an orthogonal system.

A system of functions ¢,(x)e L?(a,b) (n = 1, 2, ...) is said to be orthogonal in the
interval [a, b}, if

b
f(pm(x)(p,,(x)dx=0 m#n, m=12,...; n=1,2,...,]

a

) (9.1)
[ @2(x)dx # 0 n=12,..

The relationships (4.1) are simply proof of the orthogonality of the trigonometric
system
1, cosx, sinx, ..., cosnx, sinnx, ...

in the interval [— 7, 7).
The orthogonal system is said to be normal, if

b
[R@dx =1 (m=1,2..).

Rademacher’s system''1 can serve as an example of a normal orthogonal system;
it is set up thus: the interval [0,1] is divided into 2" equal intervals and the function
r,(x) is assumed to equal + 1 in the first, third, ..., (2" — Dth interval and to equal
— 1 in the second, fourth, ..., 2" th interval (i.e. it assumes alternately the values + 1
and — 1) and at the end points of the intervals it is considered to equal zero. This
holds for all values of n (n = 1, 2, ...). The orthogonality of the system {r,(x)} ob-
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tained in the interval [0,1] follows from the fact that if m # »n (let m < n), then the
function r,(x) in every interval when r,(x) is constant takes the value +1 just as
many times as the value —1 and the lengths of the intervals in which it is constant
are all equal. Thus we are satisfied that

1
f Fu(X)r,(x)dx =0 (m # n).
0

Since for any n we have r2(x) = 1 everywhere, apart from a finite number of points,
then the system {r,(x)} is normatt.

Later whilst studying the properties of trigonometric series Rademacher’s system
will prove very useful.

A trigonometric system is not normal but can be made normal, if the first function

is multiplied by 1//27 and all the other functions by 1/y/7, that is, the system

1 COSX sinx cosnx sinnx

\/27z ’ \/n ’ \/n T \/n ’ \/n ’
is already a normal orthogonal system.

We will not consider the question why the study of orthogonal systems is extremely
interesting and important. Specialized books are devoted to this question. Here we
shall merely show that a whole series of theorems concerning the theory of trigono-
metric series can be obtained extremely easily, starting from very general results re-
lating to the so-called orthogonal series.

A series of the form

% can(), 92)

where ¢, are constant coefficients and {g,(x)} is a given orthogonal system of functions,
is called a series with respect to the orthogonal system {@,(x)} or briefly, an orthogonal
series.

In the same way as we described how to find the coefficients of a trigonometric series
if we know that it converges to a certain function f(x), we can discuss how to deter-
mine the coefficients ¢,, if we know that

£ = $ ). ©3)

We again assume that the series converges uniformly. We suppose that the system
{@,(x)} is orthogonal and normal in (@, b). Then multiplying both sides of equality
(9.3) by ¢ ,,(x) and integrating between the limits from a to b we findt+

b b
[ £ @n(x)dx = e [ QR(x)dx = c,,

T The reader can find more detail of the properties of Rademacher’s system in Kaczmarz and
Steinhaus’s book, ref. A 12.
11 Here the functions @, (x) and f (x) are supposed to be such that the integrals (9.4) have meaning,.
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i.e.

b
em= [ fpmx)dx (m=1,2,..). 9.4

These formulae are also called Fourier formulae and if for some functions f(x) the
numbers ¢, are found from the formulae (9.4) and the series (9.2) is formed from them,
then it is named the Fourier series for the function f(x) with respect to the orthogonal
system {@a(x)}. .

Here, as in the case of the trigonometric system, the hypothesis of uniform con-
vergence of the system was extremely limiting. We can consider a Fourier series for
the function f(x) with the single assumption that the integrals (9.4) have meaning
and then write

F@ ~ 3 e,

Just as in the theory of trigonometric series, the question arises of the convergence
of the Fourier series and to what extent it characterizes the function f(x).

It is, above all, clear that for the Fourier series to be able to define to any extent
the properties of a function, it is necessary that there should not be identical Fourier
series for two different functions. To explain the problem when this does occur, we
must first study the concept of the completeness of an orthogonal system. The problem
will be discussed in § 10. Here we shall just describe what we understand by an ortho-
gonal system in the case when the functions ¢,(x) are complex.

If the functions @,(x) are complex functions of the real variable x, then they are
said to be orthogonal when

b
[ @n(Pa(¥)dx =0 (m # n) ©.5)
and
b
[lea@)Pdx #0, (n=1,2,...). (9.6)
The system is normal if
b
[lp0)Pdx =1 (n=1,2,..).

In the case of complex functions the Fourier formulae take the form

b
& = [F(OPu(x)dx ©.7)
for normal systems and

b
[ fF@)Fa(x)dx

cp, = 3
[ 1gaGd)12dx

for non-normal systems.
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An important example of an orthogonal system of complex functions is the system
{e"™}(n =0, £1, £2,...);itis orthogonal over any interval of length 2 (see § 5).

If the multiplier 1 /\/ 27 is introduced, i.e., if the system

1
— ins =0, £1,..),
{ 27 ¢ } (n - )

is considered, then it is also normal.

§ 10. Completeness of an orthogonal system

We now introduce the following important definition.t

DerNITION. The system of functions {@,(x)}, defined in some interval [a, b], is
said to be complete in L” [a, b} (p > 1) (or in C [a, b]) if there does not exist a single
function f(x)e L? [a, b] (or f(x)e C [a, b]), which is orthogonal to all the functions
of this system, unless  (x) = 0 almost everywhere in [a, b] (for the case of the space C,
everywhere in [a, b]).

In other words, for a complete system of the equalities

b
[ F)@u()dx =0 (n=1,2,..) (10.1)

and for f(x)e L? [a, b] it should follow that f(x) = 0 almost everywhere in [a, b]
(similarly for space C, but the word ““everywhere” should be substituted for the words
“almost everywhere”).

For the integrals occurring in (10.1) to have meaning for any f(x)e L [a, b], it is
necessary and sufficient for all ¢,(x) to be bounded in [a, b]; if f(x)€ L? [a, b], then
it is necessary and sufficient for ¢,(x)e L? {a, b] (n = 1,2, ...) where 1/p + 1/g =1
(see Introductory Material, § 9 and Appendix, § 3), finally for /'(x)e C from the func-
tions g,(x) only summability is required.

The concept of completeness is introduced without assuming the orthogonality
of the system {g,(x)} but we will be interested in the case when it is orthogonal.

If the functions ¢,(x) are complex, then the definition holds, only instead of equa-
tions (10.1) we must write

b
[F)@()dx =0 (n=1,2,...).

If the two functions f(x)e L*? {a, b} and g(x)e L? [a, b] are different in a set of
measure greater than zero, then they cannot possess identical Fourier series with
respect to a system of functions {¢,(x)} complete in L? [a, b] (at p > 1). Indeed, if
this were the case, then the difference y(x) = f(x) — g(x) would be functions be-
longing to L? [a, b] and orthogonal to all {¢,(x)}, whilst the condition ¢ (x) = 0 almost
everywhere in [a, b]is not fulfilled and this contradicts the definition of completeness
of the system.

1 For all the notation used here reference should be made to the Notation (p. xxiii).
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§ 11. Completeness of the trigonometric system in the space L

We shall prove that the trigonometrical system is complete in the space L(— =, ),
i.e., we shall demonstrate that two summable functions possess identical trigonometri-
cal Fourier series only in the case when they coincide almost everywhere in (—x, 7).

For this we prove first of all that if the completeness of the trigonometric system is
already known in C, then we can immediately obtain from it its completeness in L.

In fact, we assume that f(x)e L and

fnf(x)cosnxdx =0 (n=0,1,..), ]

n (11.1)
[f)sinnxdx =0 (m=12..).

[S——

Then denoting the Fourier coefficients of £ (x) by «, and b, we have
a,=0 #=0,1,..),
b,=0 (n=1,2,..).

Let us consider the function

F(x) = [ f(2)dt
in -
—AEKX K
and
F(x + 2m) = F(x).

It is clear that F(%) = ma, = 0 and F(—x) = 0, consequently F(x) is continuous
not only in [—z, z] but also along the whole straight line —o0 < x < + 0. We
find its Fourier coefficients 4, and B, by integrating by parts, so that

1 1
A4, = - f F(x)cosnx dx = P ff(x) sinnxdx = 0.
(due to (11.1)) and similarly
B, = ! f F i dx = ! f dx =0 =12
= (x) sinnx dx = o f(X)cosnxdx = n=12..).

Thus, all the Fourier coefficients for F(x) apart from Aq should be equal to zero.
Since F(x) is continuous, then supposing D (x) = F(x) — 4,/2, we see that D(x) is
continuous and all its Fourier coefficients equal zero, i.e., it is orthogonal to all the
functions of the trigonometric system. But we have already assumed that the trigono-
metric system is complete in C. This means that @(x) = 0 and therefore F(x) = A4,/2
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= const, But since F’(x) = f(x) almost everywhere, then f(x) = 0 almost everywhere
and this is what was required to be proved.

We will now prove the completeness of the system in C.

We have defined (Introductory Material, § 22) a trigonometric polynomial as any
expression of the form

T,(x) = oo + Y, (e, coskx + Py sinkx). (11.2)
=1

It is clear that if f(x) is orthogonal to all the functions of the trigonometric system,
then it is orthogonal also to any trigonometric polynomial, i.e. for any T,(x)

ﬁﬂ@ﬂ@ﬂx=0 (11.3)

We will show that if f(x) is continuous but not identically equal to zero, then a
trigonometric polynomial 7,,(x) can be chosen such that the integral on the left-hand
side of equation (11.3) is positive; then it becomes clear that it is only possible to
avoid the contradiction if it is assumed that f(x) = 0.

Thus, let £(x) & 0; then a point & can be found such that (&) = ¢ # 0. It can be
assumed that ¢ > 0, without altering the whole argument (since in the opposite case,
it would be sufficient to show that — f(x) = 0). It can also be assumed that § = 0,
since if we are able for the functions ¢(x), of which ¢(0) > 0, to find a polynomial
T, (x) for which

ftp(x)T,,(x)dx >0,

-7

then, supposing ¢(x) = f(§ + x) and T,(x) = T,(x — &), we see that
fnf(t)T,,(t)dt = fnf(E + x)T,¢& + x)dt = fn¢(x)TZ(x)dx > 0.

Thus, it remains to prove that if £(0) = ¢ > 0, it is possible to find a polynomial
T, (x) for which
[ £ T, (x)dx > 0. (11.4)

But if £(0) = ¢ > 0, then because of the continuity of f(x) it is possible to find an
interval (— 8, + d) where f(x) > ¢/2. We have

7 é -3 7
[ FET,(x)dx = £ fET,Mdx + [ f)Tu(x)dx + af F)T(x)dx.

Since f(x) is continuous, then it is bounded, i.e.

[f <M —n<x<m, (11.5)
where M is a constant.
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Let 4 > 0be given. We will assume that T, (x) can be chosen such that the following
conditions are satisfied

T,.(x) »>1 in (—4,9), (11.6)
fnT,,(x)dx > A (11.7)

and -
T, <1 in (—=n,d0) and (6, n). (11.8)

Let us take 4 > 4 M=/c, where M is given by condition (11.5). Then

ff(x)T,.(x)dx > f—;— —M-2z>0

-7

and this signifies that (11.4) occurs and now the proof will be concluded.

So, it remains to choose a trigonometric polynomial T,(x) such that the conditions
(11.6), (11.7) and (11.8) are satisfied.

To find this polynomial we note that if

T(x) =1 + cosx — cosd,

then T(x) > 1in (- J, ) and |T'(x)| < 1 outside (— d, J), and therefore for

T(x) = [T
we also have

IT,(x)] <1 outside (—46,0) and T,(x) >1 in (-4, 9).
. Moreover, in (— /2, §/2) we have

8
T(x) > 1 +cos?—cosc3=q> 1,
and therefore
/2

é
f T, (x)dx > f T,(x)dx > q"0 >
s —52

as n — oo , which means that for any 4, by choosing n sufficiently large, the inequality
(11.7) can be fulfilled.

It remains to prove that 7,(x) is a trigonometric polynomial. But since T(x)
= cosx + ¢, where ¢ is a constant, then [T'(x)]* is a trigonometric polynomial for
any n (see Introductory Material, § 22).

Thus, our theorem is completely proved. From the very definition of completeness
of the system in the space L? it follows that if p’ > p, then the completeness in L?
implies completeness in L7, In particular, the trigonometric system which is complete
in L (§ 11) will be complete also in L? for any p > 1.
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§ 12. Uniformly convergent Fourier series

From the completeness of the trigonometric system in C, the following simple but
important conclusion can be drawn:

THEOREM. If the Fourier series for a continuous function f(x) converges uniformly,
then the sum of this series coincides with f(x).

Indeed, let
ao

f@~ 5

o0
+ Y (@, cosnx + b, sinnx),

n=1
where f(x) is continuous, and the series on the right-hand side converges uniformly
in [—m, r]. We will denote its sum by S(x). It is clear that S(x) is continuous. But
we have seen (see § 4) that if S(x) is the sum of an uniformly convergent trigonometric
series, then its coefficients a, and b, are obtained from S(x) by means of the Fourier
formulae. On the other hand, it is conditional that a, and b, are obtained from f(x)
by means of the Fourier formulae. Thence it follows that S(x) and f(x) possessidentical
Fourier coefficients. Therefore, because of the completeness of the trigonometric
system in C, they should coincide identically.

Later (see § 48) we will show that in this theorem the requirement of uniform con-
vergence can be discarded and it can be affirmed that if f(x) is continuous, then at
any point where its Fourier series converges, it converges to f(x).

At the present moment, as we are referring to uniformly convergent series, it is
appropriate to prove one lemma, which will be used frequently later.

LEMMA. Let the trigonometric series ao/2 + Y. (a,cosnx + b, sinnx) possess a
n=1
sub-sequence of partial sums, converging uniformly to some function f(x). Then this
series is its Fourier series (in particular, this statement is more accurate, when the
series itself converges uniformly to f(x)).
Indeed, let S, (x) (k =1, 2,...) converge uniformly to f(x). Then, the more so

flf(x) — S, )dx >0 as k— .

Hence for any m we have

T

f[f(x) — Sy, (¥)] cosmx dx—>0 as k— oo,

—7

f [f(x) = S, (D)]sinmxdx—>0 as k— o,
i.e. B . ,
lim f Sn, (x) cosmx dx = ff(x) cosmx dx
k> _.n —n
and similarly for sinm x. But because of the orthogonality of the trigonometric system,
if n, > m, then we have

k14

7T
f Sp, (X) cosmx dx = a, f cos’mxdx = ma,,,
—

—7
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and therefore

lim fSnk (x) cosmxdx = na,,
ko

which means

1 T
An = — ff(x) cosmx dx

and similarly for b,,. Thus the lemma is proved.

§ 13. The minimum property of the partial sums of a Fourier series;
Bessel’s inequality

Let us now return to the general case, i.e., to considering the Fourier series with
respect to any orthogonal system. We will refer to orthogonal systems complete in
L?, since they possess a number of important properties which we will proceed to
study.

Let {g,(x)} be complete in L? [a, b] and orthogonal and normal in this interval.
We set ourselves the following problem : given a function f (x) € L2, we take n functions

of the system {g,(x)} and consider all possible expressions of the form Z o0 (%), which
K=

are known as polynomials of the nth order with respect to the system {ga(x)}. We
want to know how to choose the constants «,, a5, ..., %, so that the polynomial

Y a,@i(x) gives the best approximation for f(x) in the metric space L2, i.e. for the
k=1

norm of the difference

1769 = T enpu(I L2

to be a minimum. We will prove a theorem.

THEOREM. Of all the polynomials of the n-th order with respect to a normal orthogonal
system {@,(x)}, the best approximation in the metric space L? for f (x)e L? is given by
the n-th partial sum of its Fourier series with respect to this system.

In order to verify this theorem which we will prove generally by assuming that

@,(x) is complex, we write, using the identity [ 42| = 4 - 4:
b

afb [f(x) zaksvk(x)] [ @) - za,@k(x)] dx

||f(x) S aga () FO) = S o) | dx
! k=1 L k=1

b n b n b
[1If@Pdx = 3 e [ fDpe(dx = 3an [ fRFu)dx

-+

. % f P ()P, (¥)dx;

T
lM:
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and since b
| 9e()@;(x)dx =0 for k+#j,

b
[ lpe)Pdx =1 for k=1,2,...,
then
b n b n n n
J1f@) = Y agu@Pdx = [ 1/ ()2dx = Y owcr = 3, @ee + 3. lol?,
a k=1 a k=1 k=1 k=1
where ¢, are the Fourier coefficients of the function f(x).

In other words (adding and subtracting ). Icklz) ,
k=1

= 1 F 12+ Y ler — @l = S lels. (13.0)
k=1 k=1

2
L2

| n
“f(x) = ¥ ey pi(x)
k=1

It is clear that the right-hand side of (13.1) will be a minimum when and only
when
ae=c (k=12,...,n),
and the theorem is proved.
Substituting the numbers ¢, in (13.1) instead of «;, we obtain as a result

= 112 —kg"llcklz. (13.2)

2
L2

|70 = 3 ot
i k=1

Since the left-hand side of equation (13.2) is non-negative, then the right-hand side
is also non-negative and therefore

Ylel® <1 Sl
E=1
This inequality is true for any n and therefore the series Y | ¢, |? converges and
s
o0
kZlIckl2 < | flze. (13.3)

The inequality (13.3) is called Bessel’s inequality. It holds for any normal orthogonal
system and for any f(x)e L2

§ 14. Convergence of a Fourier series in the metric space L?

An important theorem can be obtained easily from Bessel’s inequality.

THEOREM. For any function with an integrable square, the Fourier series with respect
to any normal orthogonal system converges in the metric space L*.

In order to prove this assertion, we recall (see Introductory Material, § 21) that for
convergence of the sequence f,(x) in the metric space L? it is necessary and sufficient
that for any ¢ it is possible to find N such that

I fu(x) = fm N2 <e for n >N and m > N.
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We will show that this criterion is fulfilled if the partial sums S,(x) of the Fourier
series for f(x)e L? play the role of the functions f,(x).
We have for any integer nand p > 1

n+p 2
" Sn+p(x) - Sn(x) “iz = z ck‘pk(x)
k=n+1 L2
b n+p 2 n+
=J. Z c@i(x)| dx = z | ek l?,
a | k=n+1 k=n+1

since the system {g,(x)} is orthogonal and normal. But by virtue of Bessel’s inequality

we know that if f(x)e L?, then ) |cx]|*> < + oo, and therefore for any ¢ > 0, it is
n+p k=1

possible to find N such that )’ |¢;|? < & for » > N and then
n+1

I Snip(x) — Sa() 22 < e,

which concludes the proof of the convergence of the Fourier series for f(x)e L2.

However, it should be noted that only the convergence of the Fourier series in the
metric space L? was proved. It is not evident from this that the sum in the sense of the
metric space L? of this series should be equal to the function f(x). This in fact is not
always the case. The question whether the Fourier series in the metric space L? does
converge to a given function is linked with the question of the so-called closure of the
orthogonal system in the metric space L?. We will now start discussing this question.

§ 15. Concept of the clesure of the system. Relationship between closure and
completeness

It is said that the system of functions {g,(x)} is closed in the space C in [a, b] or in
L?(p > 1)in [a, b], if it is possible to represent any function f(x)e C (or f(x)€ L?) in
this space to a given degree of accuracy in the form of a polynomial with respect to
the system {g,(x)}.

Re-stating this more precisely, the system {g,(x)} is closed in C (or in L?) if for any
f(x)e C (or f(x)e LP) and for any ¢ > 0 it is possible to choose the numbers «,,
Ops +eey Xy, SO that

[f() — Y aupu(x)| <e at a<x<bh
k=1

or

< E.
1

Hf(x) - 3 agu(%)
k=1

We will now formulate without proof two theorems referring to the connection
between closed and complete systems, namely: if 1/p + 1/g = 1, then every system
closed in L?(p > 1) (or in C) is complete in L? (or in L). Conversely, every system
complete in L?(p > 1) is closed in L.

T The proof of these theorems can be found, for example, in Kaczmarz and Steinhaus’s book,
ref. A 12.
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We will consider in more detail only the most important case, when p = 2. In this
case ¢ = 2 and the formulation of our theorem leads to:

THEOREM. In the space L? the completeness and closure of a system are equivalent, i.e.
every complete system is closed and vice versa.

This statement can be proved for any systems consisting of functions occurring
in L2. But we shall confine ourselves to a consideration of the case when the given
system is orthogonal. Moreover, since neither the closure nor the completeness of a
system can disappear or appear, if we multiply all the functions of the system by any
constants, then the system can be assumed to be normal.

Thus, let {g,(x)} be a normal orthogonal system in the interval [a, b]. We have
seen in § 14 that for any f(x)e L? [a, b] its Fourier series with respect to the system
{@n(x)} converges in the metric space L>. We will denote its sum by F(x), then

F(¥) =i (), (15.1)

where the equal sign is understood to mean convergence in the metric L2.

We will prove that the numbers ¢, are the Fourier coefficients of the functions F(x).
In fact, multiplying both sides of equality (15.1) by @,(x) and integrating (this is
valid according to Riesz’s theorem, see Introductory Material, § 21), we have

b © b
| Fx)@a(x)dx =k§lck | () Fa(x)dx. (15.2)

Because of the orthogonality and normality of {g,(x)}, we find that

b
& = | FOOPu(x)dx.
Hence we conclude that all the Fourier coefficients of the functions f(x) and F(x)
are identical. If it is assumed that the system {g,(x)} is complete, then this is possible
only in the case when f(x) = F(x) almost everywhere and therefore we obtain

f® = 3 an.

Here the equality sign is again understood in the sense of convergence in L2. Therefore

i

iif(x) ~ Y (@] -0
K=1 !

|
o
as n— o0, i.e. for any ¢ > 0 it is possible to find N such that

n .

Hf(x) - ch%(x)ii <é.
It k=1 L2

But f (x) was any function of L2. Therefore, in agreement with the definition of closure,
we see that {g,(x)} is closed in L?.

Thus, we have proved that the completeness of a system in L? implies its closure in
L2, The converse is very easily proved.
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Let {g.(x)} be a closed system in L? and f(x) any function of L% Then for any
¢ > 0 it is possible to choose numbers 4, «,, ..., &, such that

<eé.

{ n
FOEPRRNS
But it was proved (see § 13) that of all the polynomials of order n with respect to the
system {g,(x)} the best approximation to f(x) in the metric L? is given by the poly-
nomial ) cxp(x), the coefficients of which are the Fourier coefficients of f(x).
k=1
Therefore

<eé&.

Hf(x) - S ane| <| 76 - $ o

But since we know (see (13.2)) that

|

2 n
= f1? —kzllcklz,

"f(x) ~ ¥ ape®
j =1

then
0<|fi? —kleckl2 <&

whence it follows that

S e = 1712 (15.3)
k=1

We have seen earlier (§ 13) that for any normal orthogonal system Bessel’s in-
equality (13.3) holds

el < 1717
k=1

We now see that in the case of a closed system this inequality changes to the equal-
ity (15.3); it is usually known as Parseval’s equality.

Thus, if a system is closed, then for any f (x)e L? Parseval’s equality holds.

But from this the completeness of the system {g,(x)} in L? follows immediately,
since if the function £ (x) € L? is orthogonal to all functions of the system {p,(x)}, then

b
= [fOP()dx =0 (n=1,2,..),

a

i.e. all its Fourier coefficients equal zero; but then || f]|2 = 0 due to (15.3), i.e.

b
[1f1?dx =0,

and this is possible only if f (x) = 0 almost everywhere.
Thus, the closure of a system in L? implies its completeness in L?; and the proof
is concluded.
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§ 16. The Riesz-Fischer theorem

We have seen in § 13 that for any function f'(x) e L? the series z | e, 12, comprising
et

the squares of the moduli of its Fourier coefficients, converges for any orthogonal

system. Moreover, in the case when the system under consideration, is complete, then

(see 15.3) ©
I f1I1% = ;Icnlz-

But the following considerably deeper theorem also holds:
THE Riesz~-FISCHER THEOREM. Let ¢, (n = 1,2, ...) be any sequence of numbers for

which Y |c,|* < + o and {@,(x)} be any normal orthogonal system. Then there exists

n=1 .
an f (x)e L? such that the numbers c, are its Fourier coefficients with respect to this system;
if the system is complete, then there exists only one such f (x).

To prove this we note that if a series Z C,@a(x) is set up, then it should converge in
oy’

the metric L?; indeed since Z fe,|? < + oo, then for any € > 0, N can be chosen

sufficiently large for Z | eal? < €. But then

I Snrp(x) — Sa(x)|1? = lecklz <e m>N,p>0

(we have already carried out a similar argument in § 14); therefore, the sequence S,(x)
converges in the metric L2, Thus, an f(x) is found such that || f(x) — S,(x)[l,, = O

[ )
as n — 0. Repeating the argument of § 15 we see that the series ) c,@,(x) is the
n=1

Fourier series for f(x), whilst if the system is complete, this f(x) is the only one.

§ 17. The Riesz-Fischer theorem and Parseval’s equality for a
trigonometric system

Both the Riesz-Fischer theorem and Parseval’s equality have been proved for
normal systems of functions. Therefore they hold for the system
1 cosx  sinx cosnx  sinnx

Jon g T dm A

Therefore, if a,, a,, b, are a sequence of numbers for which

2

a o]
7" + Y (@ + b)) < + oo, 17.1)
n=1

then it is possible to find F(x) such that

T k24

f 1 F(x)d fF( ) cosnx J b J‘F( ) sinnx J
= Ee— X x; an = X) —— x; n = ——— .
27 NG * NE *

—7T -7
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Hence, supposing f(x) = \/ 7w F (x), we see that

ay, = 1 ff(x)dx; a, = 1 ff(x) cosnxdx; b, = L ff(x) sinnx dx.
T T T

Thus, if the series (17.1) converges, then there exists £ (x) e L?, such that the series
with coefficients a,, b, is a Fourier series.
Parseval’s equality for a trigonometric system takes the form

1 ; Z ©
;f 200 dx = % + 3 (@ + B). (17.2)
n=1

We will also note that by virtue of the minimum property of partial sums of a
Fourier series (see §13), we can state particularly for the case of a trigonometric
series, that of all the trigonometric polynomials of order not higher than n, the best
approximation in the metric L? for any f (x) € L? is given by the nth partial sum of the
seriesa (f).

In Introductory Material, § 24, we denoted by E®(f) the best approximation of

f(x)e L? in the metric L? by trigonometric polynomials of order not higher than »;
this means

EQ(f) = { [1fG) = s,,(xwdx}%. (17.3)

This formula will be useful later.

§ 18. Parseval’s equality for the product of two functions

In this section we will only consider functions which assume real values.

We note yet another useful equality, easily derived from Parseval’s equality.

Iff (x)e L? and g(x)e L?, and the system {@,(x)} is orthogonal, normal and complete in
(a, b), whilst ¢, are Fourier coefficients for f(x) and d, are Fourier coefficients for
g(x), then we have the formula

b [2e]
[ f(0)g(x)dx = ; Cnd,. (18.1)

Indeed, if fe L? and ge L2, then this is just as true for their sums and applying
Parseval’s equality to f(x), g(x) and f(x) + g(x), we have

b © b ©
[f*@dx =3 i, [ dx = X s (18.2)

b 0
JI7G) + g(Pdx = ¥ (co + do) (18.3)

a
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Removing the brackets on the left-hand side of (18.3) we obtain
b b b b
[+ g@Pdx = [ f2()dx +2 [f()e@)dx + [ g*()dx

=Y c2+2) cd, + ), d2
n=1 n=1 n=1
Subtracting equation (18.2) from (18.3) and dividing by 2, we obtain the desired
formula (18.1).
For the case of the trigonometric system, formula (18.1) takes the form

“°2°‘° + Y @ + by B,

n=1

1 k11
o+ [ rgax -

where a,, b, are the coefficients for £ (x) and «,, f, are the coefficients for g(x).

§ 19. The tending to zero of Fourier coefficients

o)
We have seen that if f (x)e L2, then ) |¢,|> < + oo, whence it immediately follows
n=1
that|c,} — 0 as n - o0. This holds for any orthogonal system. Moreover, the Riesz—-
Fischer theorem proves that if for some ¢, we have ) ¢z < + oo, then these ¢, are
certainly Fourier coefficients of some function f(x)e L2.

Matters become considerably more complicated if f(x)e L but f2(x) is non-
summable. Then we can say very little about the Fourier coefficients of f(x). It
would be true to say that given a sequence of numbers ¢, for which ) ¢ = + oo,
then we do not even know whether there exists a function that possesses these numbers
for its Fourier coefficients.

We will state here a few simple facts which will permit us to judge Fourier coef-
ficients to a certain extent.

MERCER’S THEOREM. If for an orthogonal normal systemt {@,(x)} the functions are
all bounded, i.e.

e <M a<x<b (®=12..),

then the Fourier coefficients of any summable function with respect this system tend to
zero.
Let f(x) be summable and ¢ > 0 be given; we will first find a function F(x), for
b

which f | f(x) — F(x)] dx < ¢, whilst F(x) is bounded. This is always possible from

the very definition of a Lebesgue integral.

T Here we are concerned only with functions which assume real values.
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Since any bounded function is known to belong to L?, then its Fourier coefficients
tend to zero, which means that for a sufficiently large N we will have

b

fF(x)tp,,(x)dx <ée at n>N.

Moreover
b
JIf®) = F@)lgu(x)dx| < Me.
and then
b
[ FO@u(dx| < e(1 + M) for n> N,
and therefore

b
ff(x)(p,,(x)dxa 0 as n—- o0,

and the theorem is proved.

Since a trigonometric system consists of functions which are all bounded, it follows
in particular that

THEOREM. For any summable function its Fourier coefficients with respect to the
trigonometric system tend to zero.

This fact has very great significance since later (see § 62) we will see that the trigono-
metric series, the coefficients of which do not tend to zero, can converge only in a
set of measure zero. However, the tending to zero of the coefficients of a trigonometric
series alone is not sufficient for it to converge (see § 63); moreover, we will later see
(Chapter V, § 20) that a Fourier series can also diverge at every point. Thus, the problem
of convergence of trigonometric series requires serious investigation.

§ 20. Fejér’s lemma

The theorem of § 19 on the tending to zero of the Fourier coefficients is a particular
case of the following general result, due to Fejértil,

Festr’s LEMMA.T If f (x) e L has a period 2x and g(x) has a period 27 and is bounded
then

Fi T

1 F
lim | f()g@dx = 4 f F(x)dx - f g(x)dx. (20.1)

—7

Here n —» o0, assuming any values, not only integers (supposing g(x) = cosx or
g(x) = sinx, we immediately see that the assertion concerning Fourier coefficients is
true).

1 This lemma can be omitted on a first reading. It is only used in Chapter XIII.
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For the proof of Fejér’s lemma, let us note first that if for any € > 0 it is possible
to find ¢(x) such that

F 4

JIfG) — () dx < e (20.2)

-

and if for ¢(x) equality (20.1) has already been proved, then it is also true for f(x).
In fact, we have for any »

! fn FNgmx)dx — fntp(x)g(nx)dx‘ < Ms, (20.3)
| == —a

where M is the upper bound of f(x) in [— 7, zz]. Moreover, if (20.1) is true for ¢(x),
then N is found such that

n n 4 |
f(p(x)g(nx)dx - % f(p(x)dx J\g(x)dxl <e¢ for n>N. (20.4)

Finally, it follows from (20.2) that

T

. f feax [ gydv= o f ¢dx [ gax

—n

" |

—7

- |

£ [
iy fg(x)dx

-—JT

<eM. (20.5)

Therefore, from (20.3), (20.4) and (20.5)

ki 4

J

| =

for any n > N. Since ¢ can be as small as desired, (20.1) follows from (20.6).

Since the class of step-functions is everywhere dense in the class of functions fe L
(see Introductory Material, § 21), then on the basis only of what has already been
proved we see that it is sufficient to prove equality (20.1) for step-functions. But this
is also easily proved for them, since the interval [— s, =] is divided into a finite
number of intervals in each of which f(x) is constant; then if §, is such an interval
f(x) = ¢;init and k is the number of intervals J;, equality (20.1) takes the form

Fra

1 T
f@eedx - 5 [rwax [ goax

—n !

< QM+ De  (20.6)

4

k

. k 1
lim Z ¢; | glnx)dx = ZlcjéJ B fg(x)dx (20.7)

n o j=1 i=
d; -5

it will be proved if we will satisfy ourselves that for any interval §

T

0

lim | glrx)dx = — fg(x)dx. (20.8)
n-> o 2

L} -z
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Let 6 = (a, b). We have —x < a < b < z. It must be proved that

b 7

. 1 1
"li)n:o A f gnx)ydx = Er fg(x)dx, (20.9)
taking into account that |g(x)] < M and g(x) is periodic with period 2.

For this purpose we will note first of all that

b

nb
1 1
5 —a f gnx)dx = b —a) f g)dz. (20.10)

a

Let m; and m, be integers (each of them can be positive, negative or equal to zero)
such that

my - 2x < na<(m + 1)2xm,
(20.11)
m, - 2n < nb < (my, + 1) 2n.
Since
nb may - 2w nb na
[gdt= [ gnydt+ [ gydt— [ g(r)dt (20.12)
na my - 2n my - 2n my - 2n

and the range of integration of the last two integrals for formula (20.12) does not ex-
ceed 27, then

nb 2nm;
| g@®dt — [ g(v)dt| < 4 M=, (20.13)
na 2mwmy
Moreover
27my 7
| g®dt = (my — my) [g(r)dt (20.14)
2 7my —7

because of the periodicity of g(¢). From (20.13) and (20.14) this means that

nb n
‘ | g®ydt — (m, —my) | g(t)dt

< 4Mmz. (20.15)
But from (20.11)

(my, —my — D2n <npd —a) <(m, —m; + 1)2x,
and therefore
nb—a =(@my, —m; + 0)2x, where |0] < 1.
In other words,
n(b — a
27 -

mz—'m1=

6, (20.16)

and therefore from (20.15) and (20.16)

nb 7
1 1 0 aM
T fg(t)dt -5 fg(t)dt R fg(t)dt‘ <t —a _”a) :
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Hence it follows that

ha 4

. 1 1
11_)1’1’1 *‘n—(b—_T) f g)dt = D f g(t)dt
nb —n

and taking into account (20.10) we see that (20.9) is proved and thus the proof of the
lemma is concluded.

§ 21. Estimate of Fourier coefficients in terms of the integral modulus of continuity
of the function

We have seen in § 19 that for any summable function f (x) the Fourier coefficients
a,, b, tend to zero as n — co. However, sometimes the knowledge of this one factis
insufficient and the rate at which it tends to zero should be estimated.

Let us recall that in Introductory Material, § 25 we defined the concept of the integral
modulus of continuity w, (4, f) for f(x) and we proved that for any fe L we have
©0,;(0,f)>0asd—0.

Let ¢, be complex Fourier coefficients of the function f(x), i.e.

2n
Cp = % jf(x)e"""dx n=0,+1,+2,..). 21.1)
0
By substituting x + zz/n for x we can write
2n
1 7 .
== 5= ff(x + 7) e dx. (21.2)
0

Adding (21.2) and (21.2) and dividing by two, we obtain

27

¢, = % I:f(x) —f(x + j’—:—)]e"""dx,
0

whence

47

leal < —J;ﬂf(x + —”’;) _F) |dx < —— o (%f)
0

Thus for complex Fourier coefficients of the function f(x) we have

1
leal < o (%f) (n=+1,+2..). (21.3)

In the case of real Fourier coefficients, arguing in just the same way we have

1 T
lanl < 27 w1 (—;l—,f),
(n=12..). (21.4)
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Formulae (21.4) give new evidence of the fact that the Fourier coefficients of any
f(x)e L tend to zero but they also permit the rate of this tendency to be judged in
terms of the properties of the function, since, roughly speaking, the “better” the
function is, the more rapidly its integral modulus of continuity tends to zero.

If f(x) is periodic and continuous in [—,n], then from the definition of the
modulus of continuity (see Introductory Material, § 25) we immediately conclude that

wl(aaf) < 0)(6,f) * 275,

and therefore for continuous f(x) we have
k4
!anl <o (Y’f) ’
n=12..). (21.5)
7
bl <o (2.1).

§ 22. Fourier coefficients for functions of bounded variation

Let f(x) be a function of bounded variation in [0, 2=]. If V'is its complete variation
in [0, 27}, then we have

|

f(x+k—;£) —f(x+(k— 1)%)' <V 2.1)
But by arguing as in § 21 we have

2n

2

k=1

jan] < ﬂf(x + ) — S| dx,
0

dx,

bnl < ﬂf(x +2) - 76
0

and since, because of the periodicity of f (x), we have for any k

f“f(x+k%) —f(x+(k— 1)—;3) dx = ﬂf(x+ %)-—f(x)

then it is also possible to write

dx,

dx.

la,] <51;T’f(x+k;:—) -—f(x+(k—l)%)
0

Adding all such inequalities fork = 1, 2, ..., 2nand then dividing by 2# and taking

into account (22.1) we find 2

14
. f Vdx = — (22.2)
0

lax] <
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and Similarly v
b, <—. 22.3
|4 2n ( )

Hence we conclude: for any function of bounded variation

ay = O (%) , by=0 (—’11—) (22.4)

(for the notation O(1/n) see Introductory Material, § 11).

If it is required that apart from being of bounded variation f (x) is also continuous,
then the question arises whether it is not possible to better this estimate? We will
prove that this is not so in Chapter II, § 2).

§ 23. Formal operations on Fourier series

We have seen (see § 11) that the trigonometric system is complete in L, i.e. two
summable functions can possess identical Fourier series only if they are equal almost
everywhere. Thus a Fourier series, even if it is not convergent, is nevertheless closely
connected with only one function. We will now demonstrate that it is possible to carry
out just the same operations on divergent Fourier series as on series convergent to
those functions of which they are the Fourier series.

(1) Addition and subtraction of Fourier series. If we have to construct the Fourier
series of the sum or difference of two functions, then it is sufficient to add (or sub-
tract) the Fourier series of these functions. Indeed, if

n=-+ow

f)~ Y ce™
and
n=+w .
g(x) ~ Y yue™,
then
n=-w .
F) gt~ 3 (et yn)e™,
since

1 i —inx
37 | U £ s@ieax

1 i 1 —~inx
=5 ff(x)e dx + o fg(x)e dx = ¢, £ Ve

Thus if the Fourier series were written in a real form, we should be satisfied that if
a, and b, are the Fourier coefficients for f (x) and ¢, and d, are the Fourier coefficients
for g(x), then for f(x) + g(x) the coefficients have the form a, + ¢, and b, + d,.
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(2) Multiplication by a constant. It is immediately evident that if

n=+w

f@x)~ Y c.e™,
then -
n=-+400
kf(x) ~ Y kc,e™,

n=—0o

where k is any constant. The proof is carried out just as in the preceding case.

(3) Fourier series for f (x + «). If o is any constant, then from

fx)~ Y cpe™

f(x + 0() ~ Z (cneina)einx ~ Z c"ein(x+:x)_

it follows that

Indeed
= ff(x + a)e '™ dx = L ff(t)e‘i"(‘”"‘)dt = gino 1 ff(t)e'i’"dt
2n 27 Py .

Therefore the Fourier series for f (x + «) has just the same form as if we substituted
x + « for x in the Fourier series for f(x).

The reader can easily satisfy himself that this is the result if the Fourier series is
given in a real form.

(4) Fourier series for f (x) '™ where m is an integer. We have

n==+ o0

imx inx
n—m b
f(x)em™~ 3 c,_ne
n= —o0

since
L ff(x)eimxe—inxdx = L ff(x)e—i(n—m)xdx
2n 2n )

Hence it again follows that the Fourier coefficients are determined just as if we
had operated directly with the series as with a convergent one; in this case we would

have
n=400 n=-4o0 k=400
f(x)eimx — Z cneinxetmx — Z c,,e' (nfm)x z ckﬂmeikx

n=—cw n=-— k=—c

(5) Fourier series for]_“(x). If
f(x) ~ Z Cnei"x’

fO) =Y c.ei™,

which is verified directly from the Fourier formulae.

then

(6) Fourier series for a “‘convolution”. It is given that £ (x) and g(x) are two periodic
functions,
feL[-mn] and g(x)eL[—mn,n].

4 Baryl
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Let us consider the product f(x + ¢) g(¢). If no additional limitations are put on
f(x) and g(x), then it might appear to be a non-summable function of the variable z.
But we will prove, following Young!?J, that this product for almost all xis a summable
function of ¢ in [— z, =], and supposing

1 k14
0(x) = o ff(x + DHg()dt, (23.1)

we have Q(x)e L [0, 2x]. This function Q(x) is known as the convolution for f(x) and

g(x).
It is sufficient to consider the case when f(x) > 0 and g(x) > 0.
We assume

F(x) = [ f(ndt.

Then the function
fn [F(x + t) — F(t — m)]g(t)dt = [ dt [ [r@e+ u)g(t)du:l

exists and is finite for any x. We will suppose that
t+weg@), if f(t+ wegl <M,
£t w M) = S( g ' J( 0
M, if f(t+ wg() > M.
We have
j dt ff(t + wyg(t)du = f dt lim ff(t, u, M)du

— M->w —=x

= lim }dt}f(t,u,]l/[)du= lim fdu }f(t,u,M)dt

M>w —n —=xn M-3w -z —=xn
= [ du lim [ f(t, u, M)dt. (23.2)
-7 M->w —n

The limit lim J' f(t,u, M)dt might seem to be equal to 4+ co, but because of the
Moo ~,
equality (23.2) this can occur only for points of some set of measure zero. At those

points, where it is finite, it equals f f@+wg)d:.

Thus we have proved that the convolution Q(x) is almost everywhere defined and
summable. Now we will express the coefficients of its Fourier series in terms of the
coefficients of the series for f(x) and g(x).

If
f() ~ Y cpe™,
g(x) ~ ). dye™™,
then the Fourier coefficients p, for Q(x) have the form
Uy = Cnl_y. (23.3)
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Indeed

n

1 . 1 1 :
-— —inx — e — —inx
o = 5 f O(x)e""*dx oy o= ff(x + Hg(t)dt; e "*dx.

—7

Changing the order of the integration, we obtain

1 n 1 k24
o =5 | 80) {g f Fx+ ,)e_mdx} 1

1o Lof 1
R —_ —in(z—t) _ int —
e f g(t){zn f f@e dz} dt = -~ f g(Demc,dt = cod.,.

I

(Changing the order of integration is valid here, since according to Fubini’s
theorem (see Introductory Material, § 18) such a change can always be carried out
for non-negative summable functions, but ¢ ¥ = cosnx — isinnx, and cosnx and
sinnx change sign only a finite number of times in [— 7, 7], therefore the integrals
under consideration reduce to those for which the rearrangement of the order is
valid.)

Thus 0 ~ ¥ cud_ne™. 23.4)

It is appropriate to note here that if f(x)e L? and g(x)e L2, then Y. |¢,|? < + o0
and Y |d,|> < + o0, and therefore ' |¢,d_,| < + co. Now we will show that under
the given conditions Q(x) is continuous. For this we ﬁrst partition g(¢) into two terms,

g(t) = g,(t) + g,(?) so that g,(¢) is bounded and f 22(t) dt < &2, where ¢ > 0 is
given. We have —~n

1
O +H = 00) = 5~ [ LG+ 14 B) = 765 + g

+ —21; f [f(x+t+h) — f(x + D]g(dt = I, + I,.

Iflg, ()] <M (0 <t < 2m), then

M 24
|11l<—2;f|f(x+t+h)—f(x+t)|dt

. M
f 7+ B = FO dt < 5 0:6.1)

for 0 < |h| < d, where w, (d, f) is the integral modulus of continuity of the function
f(x) and signifies that I; can be made as small as desired, if § is sufficiently small.
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For I, we find that

. JECERR R J JECE J [rwar

Thus, |Q(x + h) — Q(x)| can be made as small as desired, if A is sufficiently small.

We will now remark that since Q(x) is continuous and the series (23.4) converges
absolutely and uniformly, then this series by virtue of the theorem in § 12 converges
to Q(x) at every point. In particular, we derive from this, by supposing x = 0,

1 n=+4ow
00 = 5 [ 10t =" ad.. (23.)
(7) Fourier series for a product. Let
n=-t+o . n=-+c0 .
f(x) ~ —z‘, cpet, g(x) ~ _Z dn e,
We assume that f(x)e L? and g(x)e L2 Then f(x) g(x)e L.
Supposing N
FOED ~ 3 e,
we will show that
k=+ow
Yn = D, Cilpi. (23.5)

In order to succeed in doing this, we note that

1 ; )
h= g | S@eEax,

and therefore, supposing
h(x) = g(x)e ™, (23.6)
we have

1 ki3
Y= 5 f FWhG)dx.

If we denote the Fourier coefficients of #(x) by u,, then according to formula (23.4)

k=+c0
Vo = Z Crll_k» (23.7)

k=—w

But since on the basis of item (4) of this section it follows from (23.6) that

tx = dipns

k=+4ow

Vn = Z ckdn—k’

k=—o0

then

and this is formula (23.5") which we wanted to prove.
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Note. We will recall that for numerical series the following theorem is valid: if
Uy + u; + --- + u, + --- absolutely converges and its sum equals u, and vy + vy
+ --- + v, + --- absolutely converges and its sum equals ¢, then the series

UgVo + (ovy + votty) + =+ + (UoVpy + U Uy + -+ + Uplo) + -

absolutely converges and its sum is uv.

It is not difficult to prove that if we established a series for the product f(x) g(x)
using this formula for the multiplication of the series, then the coefficients of this
series would be expressed by the formula (23.7), i.e. we see that Fourier series can be
treated here in the same way as if they converged absolutely.

Conclusion. If we have Y. |¢,| < + o0 and Y |d,| < + oo, then Y, [7,] < + 0,
since it is known that the product of two absolutely convergent series converge ab-
solutely; moreover, ) |y,| <Y, |c,| Y. |d,l, since in an absolutely convergent series
it is possible to rearrange its terms, without altering its sum.

Later (see § 61) we will see that absolute convergence of a trigonometric series in
[— @, =] occurs when and only when the series of the absolute values of its coefficients
converges. Therefore we have

THEOREM. If f(x) and g(x) expand into absolutely convergent series, then their
product also possesses this property.

(8) Integration of Fourier series. Let f(x) be a periodic summable function, and
F(x) its indefinite Lebesgue integral

F(x) = C + fx f(@dt.
0

We set ourselves the task of expanding F(x) into a Fourier series, if the series for
S (x) has already been obtained:

n=-+ow

f(x) ~ =Z_w c e,

We note above all that

2%
FQ2m) — FQO) = [ f(t)dt = 2mc,,
0

and therefore if ¢, % 0, then F(x) will not be periodic. Therefore, we shall consider
the auxiliary function

(%) = F(x) — cox. (23.8)
Since
2n+x

D(x + 2m) = F(x + 2m) — co(x + 2m) = C+ [ f()dt — cox — co2n
0
=C + ff(z) dt — cox = D(x),
0

then @ (x) is already periodic. It is absolutely continuous as is also F(x) and

P'(x) = F'(x) — co = f(x) — ¢co
almost everywhere.
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Let us find the Fourier coefficients for @(x); we have forn # 0

27
1 .
_ —inx
C, 2 f@(x)e dx
0

2n
2z 1 Co

2n
—inx — —inx
, + Smin ff(x)e dx 2min fe dx (23.9)
0

0

1 { D(x)ein* }

—in

2n 1

(integration by parts is valid because of the absolute continuity of @(x)). Since
D(2n) = D(0), then we obtain immediately

C, = l"—n (n=+1,+2,..). (23.10)
We can now write

D(x) ~ Co + 3 %; e, (23.11)

where the symbol Y denotes that the term with n = 0 is omitted.
From (23.8) and (23.11) we conclude that

F(x) — cox ~ Co + 3 f—n e, (23.12)

It is clear that if we were to integrate completely formally the series o(f), then we
would obtain this same series (23.12) for F(x).
If the series for f(x) were written in the real form

a
S ~ —22 + Y (a,cosnx + b, sinnx),

then we would obtain
F) - 2

— b, cosnx + a,sinnx
5 .

x~C+Yy

n

(9) Differentiation of Fourier series. Fourier-Stieltjes series. Let F(x) be absolutely
continuous in [0, 27] and have a period 2x. If

F(x) ~ Y, cpe™,

F'(x) ~ 3 inc,e™. (23.13)

then for its derivative we have

Indeed, it is sufficient to apply formula (23.10), assuming that f(x) = F'(x).

Thus the Fourier series for the derivative of F(x) is obtained in the same way as if
we differentiated the Fourier series for F(x).

Similarly, if
o

F(x) ~ 5

+ Y (a,cosnx + b,sinnx),

then
F'(x) ~ ¥ n(b, cosnx — a,sinnx).
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We note, however, that these formulae are valid onlyif F(x)is absolutely continuous,
otherwise it is not an indefinite Lebesgue integral of its derivative, even if this deriv-
ative exists and is summable.

In the case when F(x) is a function of bounded variation, then, supposing

b2

1
= — —inx = .1
=5~ fe dF (n=0,+1,..), (23.14)

0
where the integral in formula (23.14) is a Riemann-Stieltjes integral (see Introductory
Material, § 16), we write

dF ~ ) c,e™ (23.15)

and this series (23.15) is known as the Fourier—Stieltjes series for dF.
If we assume
D(x) = F(x) — cox,

then @D(x) is also of bounded variation and is periodic too. Let C, be the Fourier
coefficients for @(x); then for n # 0, integrating by parts, we find

2z 2z
1 1 c
- —inx _ e —inx L
C, 2 f@(x) e dx 5w in f e~ in* g i
0 0

since d® = dF — c¢q dx. Therefore, if
D(x) ~ Co + ) C, e,
where the symbol Y’ indicates that the term at n = 0 is omitted, then

c”
D(x) ~ Co + )’ T e

and

¢
F(x) — Cox ~ Co + Y’ 7n— e, (23.16)
From formulae (23.15) and (23.16) it follows that the Fourier-Stieltjes series for dF

agrees accurately as regards the constants with the result of differentiating the Fourier
series for F(x) — cox.

§ 24. Fourier series for repeatedly differentiated functions

Let us assume that k > 2, the function f(x) has derivatives up to the order k — 1
inclusive and the derivative of the (k — 1)th order is absolutely continuous; then the
kth derivative is summable. Denoting the Fourier coefficients for f®(x) by c¢®, we
find from formula (23.10) that

((5] *k—1) (k)
4 C

&—1) _ B . Gk—2) __ _ B

c, = N ) ==

in in ~ (Gm)?°

Cn
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etc., and finally o

=—(i7)r.

Hence it is immediately clear that the higher the derivative of the function is, then the
more rapidly do its Fourier coefficients tend to zero.

In particular, if £ (x) is defined and summable almost everywhere, then ¢* tends
to zero as n — + o0, just as the Fourier coefficients of a summable function and then

Cn

=0 (ﬁ) . (24.1)

Such an estimate does of course occur if the Fourier series has a real form, i.e.

1 1
a,=o0 (F) and b, =o0 (—’17) . (24.2)

§ 25. On Fourier coefficients for analytic functions

Let £ (x) be a function of a real variable, analytic in the interval [— &, #} and periodic
with period 27. Let us estimate its Fourier coefficients. We will show that they de-
crease at the rate of a geometric progression; more exactly, it is possible to find 0,
0 < 0 < 1, and a constant A4 such that

leal < A" (n=0,+1,+2,..) (25.1)
or in a real form

la,] < A6 and |b,| < A6" (n=0,1,2,..). (25.2)

The numbers 0 and A vary, generally speaking, with the function f(x) being con-
sidered.

In order to prove this, we note first of all that because of the conditions imposed on
f(x), we have

f(=m) =f(@) and fO(-m) =fP@ *k=1,2,..).

In estimating the Fourier coefficients for functions possessing k derivatives, we
have seen (see § 24) that

1
leal = e 1621,

where ¢ are the Fourier coefficients of /¥ (x). But

7
1 .
Cf,k) = e ff(k)(x) e~ inx
—n

Therefore, if the maximum modulus of f®(x) is denoted by M,, then

M,
leal < 77
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But for the numbers M, this inequality holds
M, < B*k! (k=1,2,..),

where B is a constant.t Therefore

Bk! (Bk)k
el < < |-— n=4+1,+2,... 25.3
lal < o < (p) ¢ ) (25.3)
Let us choose p such that B

— <1, 25.4

7 254

and suppose that B

0, = — 25.5

1= (25.5)

The number k in formula (25.3) is at our disposal, since the function f(x) possesses
derivatives of all orders. Therefore, for given # and p we can find an integer & from the
condition ||

k<—<k+1.
p

If this is so, then |n| > pk and taking into account (25.3) and (25.5)
B\* gk+1 plale
< - — k — 1 1 .
el < (7) =0 = == < 5=, 256)

whilst by virtue of (25.4) and (25.5) we have 6, < 1; denoting by 8 the number which
satisfies the condition

r<6 <1, (25.7)
and supposing
1
A= B

we have from (25.6) and (25.7)
[eal < 461"t (n=0,1,2,..),

and this is what was required to be proved (see (25.1)).

t Indeed, from the assumptions made regarding f (x), it follows that it is possible to expand it
analytically in some plane region containing the interval [—n,7]. If we denote by C an arbitrary
rectifiable contour enclosing the interval [—s,7] and lying in the region where f (z) is analytic, then
according to Cauchy’s formula

f(2)

M) = — f Gz — x)k+1

If the length of the contour C is [, max |f (z)| = M and the minimum distance of the points zon C
c

from the points x in [—m,7t] equals , then

1
TR 6] <M1 =k e < BRRY,

if B is chosen so that B> 1/6 and B> MI/8né%.
4a Baryl
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If we take a Fourier series in its real form, then the inequality takes the form
la,] < A6" and |b,| < A0 (n=0,1,2,...).

The reverse statement is also true, namely: if for a function f(x) the Fourier co-
efficients satisfy the inequality (25.1) where 4 is a constant and 0 < 6 < 1, then f(x)
is an analytic function in the interval [— s, 7].

Indeed, the series Y {¢,| < + oo and we then have

n=+4 o0

F@ =Y c,em™

H=—00
Differentiating this equality & times, where k is any number, we obtain
n=4 0 .
fOE) =Y i)k,
n=—0
The differentiation term-by-term is valid, since the series obtained converges ab-
solutely and uniformly because

len(@)f n*| < A6 |n]k,

and since k is a constant, then the convergence of the series > 6™ |n*| follows if
only from the application of Cauchy’s test to it.
Thus, f(x) possesses derivatives of all orders. But, moreover,

M, = max | f®x)| <24 0"n*
n=1

Hence it is possible to deduce the validity of the inequality

M, < B*k!
for some B. Indeed
k k(k — 1) k!
X y-k —_ X yk—1 X 4 k—2 = e = — ) ——
f@x dx = lnefex dx = BT f@ dx (-1 Eg°
0 0

which gives the desired inequality.
Now let x, be any point in [— 7, 7r]. Let x be any other point for which

|x — X0} <§.

Using Taylor’s formula with a remainder in a Lagrange form

n—1 £ o (n) o — Xg
I e e

where 0 < 6’ < k. But

l FP(xo + &(x — x0))

| n!

| B'n!
(x — xo)" i v’;n (x — xo)" = (B|x — xo])"
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Because [x — x,] < 1/B the right-hand side tends to zero as n — 0o and this means

that F®(x)
® X
JO) =Y = (x = xo),
K=o k!
i.e. f(x) expands into a Taylor series in the neighbourhood of the point x,; but x,
is any point of [— 7, 7], which means that f(x) is an analytic function in [— =z, =].

§ 26. The simplest cases of absolute and uniform convergence of Fourier series

We will start with the following simple observations. Let us consider a trigono-

metric series
—azi + Y (a,cosnx + b, sinnx). (26.1)
n=1
If

Y (lal + |ba]) < + 0, (26.2)

then it converges absolutely (and uniformly) in [— =, z].

It is useful to note (we have already referred to this in § 23) that the convergence of
series (26.2) is not only sufficient but necessaryt for the series (26.1) to converge
absolutely in [— =, & ].

It now remains to consider some concrete cases when the Fourier series converges
absolutely and uniformly. If this occurs, then this series has as its sum the function
f(x) for which it serves as Fourier series (see § 12). In particular, it follows that

If f(x) possesses a summable derivative of the second order, then its Fourier series
converges uniformly to f(x).

Indeed (see § 24) in this case

1 1
a,,=0(~’17), bn=0(F).

Later we will see that the requirements imposed on f(x) are too limiting and we can
obtain uniform convergence for considerably more general assumptions, but it is
expedient to mention this theorem, since even in this form it can be useful.

We will mention here yet another simple but important case, where the absolute
and uniform convergence of a Fourier series is readily detected, namely:

THEOREM. If F(x) is absolutely continuous and its derivative F'(x) = f(x) is a
Junction with an integrable square, then the Fourier series of F(x) converges absolutely
and uniformly.

Indeed, in this case, if the Fourier coefficients for f(x) are denoted by q,, b,, then
Y (@ + b)) < + oo (see § 13) and according to formula (23.10), denoting the Fourier
coefficients for F(x) by 4,, and B,, we have

n

a
and |[B,| = ’f7 )

n

[4a] =

t In § 61 it will be shown that for the convergence of (26.2) the absolute convergence of (16.1) is
sufficient not in the whole interval [— 7,771, but only in a set of positive measure.
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and therefore i

1 11
<5 i < 5@+ 5 5.
IAIII 2 ]bnl + 2 n2 and IBIII 2 an+ n2
Consequently

o0

> (4, +1B,) < + o,

and the theorem is proved.

In § 3 of Chapter IX, this theorem is generalized, so that instead of the hypothesis
f"(x) = L? we consider the case f/(x) < L?(p > 1) and we show that the result still
holds. A number of considerably stronger theorems on the absolute convergence of
Fourier series will also be given there.

A very particular case of the given theorem is given by the following example; if
F(x) is represented by a continuous broken line, then its Fourier series converges
absolutely and uniformly.

In fact, in this case F’(x) is a function which possesses a derivative everywhere
except for a finite number of points and this derivative £ (x) consists of a finite number
of steps, and is therefore bounded, and consequently /2 (x) is moreover summable.

§ 27. Weierstrass’s theorem on the approximation of a continuous function by
trigonometric polynomials

Let f(x) be a continuous function in the interval [—x, ] and f (~x) = f(x). If
we expand it periodically with period 2z, it will be continuous along the whole axis
O x. We define a function with period 2= as a continuous periodic function when and
only when it remains continuous after its periodic expansion; if £(x) is continuous
only in a certain interval of length 27, but at its end points assumes different values
and therefore becomes discontinuous if it is expanded periodically (see Fig. 4 on
page 50), then we will not call it a continuous periodic function.

After this definition we can express a theorem.

WEIERSTRASS’S THEOREM. For any continuous periodic function f(x) and for any
¢ > 0 a trigonometric polynomial T(x) can be found such that

f(x) = Tx)| <& (=0 <x < + o). (27.1)

A large number of proofs of this important theorem exist. We will refer here to one

of them,
Because of the continuity of f(x) in [— 7, n] it is possible to find a é such that

£ () — ()] < % for |x — x"| <9, 27.2)

where x’ and x”’ are any two points in [— 7, 7z].

Let us divide the interval [— 7, 7] into m equal parts, choosing m so that 2z/m < J.
We will denote by (x) the broken line coinciding with £ (x) at the points k sz/m, where
k=0, x1,..., +m, and will assume that p(x + 27n) = p(x) for any x(— o0 < x
< + o). From (27.2) it is clear that

[f(x) — p(0)] < 38 for |x —x"| <6
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and because of the periodicity of the two functions this is also true for any x,
—0 < Xx< + 0.

Since p(x) is a broken line, then according to the proof at the end of § 26 its Fourier
series converges absolutely to it. Therefore denoting the sum of the first n terms of
its Fourier series by S,(x), it is possible to choose n sufficiently large for

ly (x) — Syp(x)] <§ for —o0 <x < + 00,

It is clear that S,(x) is a trigonometric polynomial and denoting it by T'(x) we see
that the theorem is proved.

§ 28. The density of a class of trigonometric polynomials in the spaces L? (p > 1)

Weierstrass’s theorem which has just been proved can be considered as evidence
of the fact that the class of trigonometric polynomials is everywhere dense in the
space C of continuous periodic functions.

It follows from this that this class is everywhere dense in any space L*(p > 1).

Indeed, if f(x)e L?, then for any ¢ (see Introductory Material, § 21) it is possible
to find a continuous ¢(x) such that

If — @l <e,
and on the other hand it is possible to find a trigonometric polynomial 7(x) such that
€
- . < x <2m,
() = T < 5—, 0 <x <2

and therefore
lo —~ Tl <e

(it is assumed that the norm is calculated in an interval of length 2x). Therefore,
according to Minkowski’s inequality (see Introductory Material, § 10)

If =Tl < 2e,
and the theorem is proved.

§ 29. Dirichlet’s kernel and its conjugate kernel

An important role in the study of the convergence of trigonometric series is played
by the functions

1
D,(x) = 5 + cosx + -+ + cosnx (29.1)

and
D,(x) = sinx + -+ + sinnx. (29.2)
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The function D,(x) can be written thus:

1
sin (n + —2—) x
D,(x) = — (29.3)
2 sin D)
Indeed

x x n x
2sin — D =sin -+ ) in -
sin 2 ,(x) = sin 2 klesm 2 coskx

g+ 3 fsin (ke g) v s (k- 5
sm2+k§,I sin {k + ) x —sin —Z)x]

1
sin (n + E) X,

whence after dividing by 2 sin(x/2), formula (29.3) is obtained.
Expression (29.3) is called the Dirichlet kernel, since Dirichlet first used it in the
study of the convergence of Fourier series (see § 31).

Similarly b,,(x) is called the kernel conjugate to the Dirichlet kernel; it takes the

form
X 1
~ cosf—cos n+2)x
Dy(x) = p , (29.4)
2 sin 5

which can also be easily verified directly.
From formulae (29.3) and (29.4) it is immediately evident that if x 3 0 (mod 27),
then

[Dn(x)] < T (29.5)

and

| D, (%) < v (29.6)

o]

We now note that the function (sinx)/x decreases in the interval (0, 7/2) (which it
is possible to prove by simple differentiation) and therefore

@
sin —
sinx 2 2
x = (= 7
2
This means
si 2 7T
ol for 0<x< 2 (29.7)
X 7T 2
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Using (29.5) and (29.6) we obtain
|D,(x0)] < % for 0<|x| <= (29.8)
and

|D(x)| < — for 0< x| <a. (29.9)

%]

We will use these formulae frequently later. Most often it will be sufficient to estimate
1 = 1
D,(x) =0 (;) and D,(x) =0 (;) asx — 0; (29.10)
sometimes it will be important that if § < |x| <z, then

|D,(9)] < 21 and |D,(%)] < ’;~ 29.11)

0
Because of the periodicity of D,(x) and D,(x) it is also possible to say that (29.11)
holdsif 6 < x <27 — 4.

§ 30. Sine or cosine series with monotonically decreasing coefficients

Before turning to a study of the cases when the problem of convergence of the
trigonometric series requires close examination, we will consider some cases where it
is very easy to judge the convergence.

Let us begin with series of the form

—azi + Y a,cosnx (30.1)
n=1
and
Y b,sinnx, (30.2)
n=1

i.e., series consisting of either cosines only or sines only., We will consider firstly the
important case when these series possess monotonically decreasing coefficients tending
to zero, which can be denoted thus:

2,|0 and 5,]0.

In studying these series we will use the estimates of D,(x) and D, (x) given in § 29
and Abel’s lemma (see Introductory Material, § 1). This permits us to prove the theorem.
THEOREM 1. If a, | O, then the series
Q
70 + Y a, cosnx

converges everywhere apart, perhaps, from the points x = 0 (mod 2m); at any 6 > 0
it converges uniformly in 6 < x <2n — 0.
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0, th 1 .

If b, | 0, then the series S b, sinnx

converges everywhere; at any 0 > 0 it converges uniformly in 6 < x <2z — 9.
Indeed, supposing in Abel’s lemma that

1
Uy = 8y, Vo= and ov,(x) =cosnx (n=1,2,..),

e have Vi = D,

and since the uniform boundedness of the functions D,(x) in d < x <2mx — 0
follows from formula (29.11), then the series converges uniformly in this interval.
If 0 < x < 27, then it is always possible to take 6 so small that 6 < x <2m — 4,
which indicates that the series (30.1) converges at the point x.

At x = 0, the series (30.1) converges when and only when Z a, < + oo.

For the series (30.2), the proof is similar; it is only necessary to substitute u, = b,
and v,(x) = sinnx in Abel’s lemma; then V,(x) = D,(x) and again the application
of the inequality (29.11) gives evidence of the uniform convergence of series (30.2) in
0 < x <2m — 0, and therefore its convergence at every point, apart from the
points x = 0 (mod 27). But at the latter it also converges because all the terms of
the series equal zero.

The theorem is completely proved.

Note. By the generalization of Abel’s Lemma (see Introductory Material, § 1) the
series (30.1) and (30.2) converge uniformly in 6 < x < 2z — J (this indicates that
it also converges in 0 < x < 2#) and when instead of @, | 0 or b, | 0 we assume only
that {a,} or {b,} is a sequence of bounded variation, @, — 0 and b, — 0, moreover.

Let us return to the case of the monotonically decreasing coefficients. It is clear
that if a,]0 and Ya, < + oo,
then the series a,/2 + Y. a, cosnx converges absolutely and uniformly in the whole
interval 0 < x < 2% (and even for — o0 < x < 4 o0). On the other hand if the
condition ) @, < + oo is not fulfilled, then not only uniform but also simple conver-
gence along the whole axis is not possible, since at the points x = 0 (mod 2x) the
series (30.1) diverges.

The question of the uniform convergence of the series ) b, sin nx is decided in
another manner. Here we have.

THEOREM 2. If b, | O, then for uniform convergence of the series Y. b, sinnx in
[0, 27] it is necessary and sufficient that nb, — 0.

Necessity condition. If the series (30.2) converges uniformly in [0, 2], then for
any ¢ > 0 it is possible to find m such that

I 2m
Y. b,sinnx
m+4-1
We will let x = w/4m; then for (m + 1) <n < 2m we have n/4 < nx <=/2 and
therefore sinnx > sinz/4 = 1 / \/ 2. Consequently,

<& 0<x<2m.

2m

1
'~ bn ’
\/2 mgl <¢
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and since b, decrease monotonically, (1/ \/f)mbz,,, <e,l.e,mb,, < \/:?.—8, which
means that m b,, —» 0 as m — co. The necessity is thus proved.

Sufficiency condition. We already know that series (30.2) converges uniformly in
0 < x <2m — 0 for any & (for the single condition b, | 0). This means that if we
prove that the addition of the condition nb, —» 0 implies uniform convergence in
(— a, a), where a is any number > 0, then everything will be proved. Moreover, be-
cause of the oddness of sinnx it is sufficient to take 0 < x < a. We will prove
uniform convergence of the series in 0 < x < #/4.

Let ¢, = max kb,. It is known that series (30.2) converges for any x; let us define

kz=n

ra(x) = ) by sinkx.
k=n

We will prove that |r,(x)] < Ke,in 0 < x < /4, where K is a constant whence the
uniform convergence of the series (30.2) in [0, 2] follows.

Above all, r,(0) = 0, if x # 0, then it is always possible to find an integer N such
that I/N < x < 1/(N — 1). If N > n, then we write

N-—1 )
ro(x) = Y bysinkx + Y bysinkx = ry’(x) + r@(x).
k=n k=N

If N < n, then let rP(x) = 0 and r®(x) = r,(x). Let us estimate r®(x) and
r®(x) separately.
We have, since |sinkx| < k | x|,

N-—-n
N-1

&y < &,

N-1
[FP )| < Y kbix < xg(N — n) <
k=n

In order to estimate r&(x) we consider two separate cases:
(1) If n < N, then using Abel’s transformation (see Introductory Material, § 1) we
find

IFPCAN < ¥ (e = busd) [ D)) + by [ Dacr (-
But since (see (29.9))
— T
ID(%)] < = for 0 < |x] <=,
then
2
[r? () < —;—bN < 2aNby < 27e,
because n < N and because of the definition of ,.

(2) If N < n, then r®(x) = r,(x) and then calculation shows that

[ra(3)] = |rP )| < 27e,.
Therefore
@) < IrP @] + 1PN <@z + De,,

which means that the desired inequality has been proved.
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Note. From the theorem just proved the following conclusion can be deduced
immediately:

There exist trigonometric series that converge uniformly in [—m,z] without con-
verging absolutely in this interval.

In fact let us consider, for example, the series

©  sinnx

2 winn (30.3)
Since b, = 1/(nlnn), then nb, — 0 as n — oo and moreover b, | 0. This means that the
given series converges uniformly in [— 7, @], but it does not converge absolutely in
[— 7, 7], since otherwise the series Y. 1/(n Inn) should converge and this series does
actually diverge.}

We make this brief comment because very frequently in proving the uniform
convergence of functional series Weierstrass’s criterion (the comparison of the terms
of a given series with the terms of a convergent numerical series) is used and in this
case both absolute and uniform convergence is directly obtained.

In particular, for the trigonometric series Y b, sinnx, where ) |b,] < + o, both
absolute and uniform convergence occurs in [— 7, 7], but in the example considered
this is not so.

It is even possible to construct a trigonometric series which converges uniformly in
[— 7, =] but which does not possess a single point of absolute convergence in this
interval (see Chapter IX, § 3).

In connection with series of the type (30.2), where b, | 0, it is useful to note yet
another theorem:

THEOREM 3. If b, l 0 and the numbers nb, are bounded, then the partial sums of the
series

0
Y. b,sinnx
n=1

are all bounded in — o0 < x < + .

1 From the Lusin-Denjoy theorem which will be proved in § 61, it follows that the series (30.3) can
28]
converge absolutely only in a set of measure zero (because Z 1/(nlnn) diverges) . Moreover, it is
n=2
easily proved that the series (30.3) is not absolutely convergent at any x 5 0 (mod). Indeed, if for
such x we had

[e0] «
{sinnx|
Y < + oo,
o=, nlnn
then
[ve] .2
sinnx
Y < 4 oo,
—t nlnn
therefore
2, (1 — cos2nx)
Z —————— < -+ o0,
e ninn

o] o
and since Z " converges, if x 5= 0 (mod 7) then the convergence of Z
n=2 n=2
and we would arrive at a contradiction.

would follow

cos 2nx
nln nlnn
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Because of the periodicity and oddness of all the terms of the series it is sufficient
to consider the interval [0, =] and since at x = 0 and x = s all the terms become
zero, then we can confine ourselves to the case 0 < x < 7.

We have the condition

lkb, | <M (k=1,2,..), (30.4)
where M is a constant. Let us suppose
7
v = {?] . (305)

If n < v, then
1S,(x)| < ‘ Y by sinkx
k=1
If n > », then

S, (x) =k21bk sinkx + Zlb,, sinkx = SO (x) + SP(x),
= v+

<Y lkbil x < M xv < Ma.
k=1

where S (x) is estimated as in the preceding case, i.e.
ISP ()| < M=, (30.6)

and to SP(x) we apply the corollary of Abel’s transformation (see Introductory
Material, § 1). Remembering (29.9)

1D, (3] <

%|a

for 0 < |x| <=,
we find from (30.4) and (30.5)

7 7

(2) < — < —_— . .
182 (x)] <2b,.4 p <2M X0 £ 1) 2M (30.7)
From (30.6) and (30.7) it follows that

[Sp(x)] < M7z + 2M = M(x + 2),

and Theorem 3 is proved.
COROLLARY. We have for any n and x

n sinkx |
y 2o, (30.8)
=k

where C is an absolute constant.
Indeed, here we are concerned with the partial sums of the series

) , (30.9)

in which b, = 1/n, i.e. b, | 0 and nb, = 1.

Series (30.9) plays an important réle in the many problems of the theory of trigono-
metric series; in § 41, in particular, we will investigate its behaviour in the neighbour-
hood of the point x = 0, since it permits us to obtain certain data on the behaviour
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of Fourier series for functions of bounded variation at those points where they are
discontinuous.

In this paragraph we have considered only a few problems concerning sine and
cosine series with monotonic coefficients. Chapter X will be devoted to a detailed
investigation of this class of series. Here instead of referring the reader to Chapter X,
we prove yet another important theorem concerning these series.

THEOREM 4. If a, | 0 and the sequence {a,} is convex, then the series

ag

+ Y a;cosjx (30.1)
2 j=1

converges everywhere, apart from, perhaps, x = 0(mod 2x), to a non-negative summable
Sfunction f(x) and is the Fourier series for this function.
To prove, this, we consider

a n
Sp(x) = —20‘ + Zla,- Cosjx
=

and apply Abel’s transformation; this gives
n—1 n—1
Sy(x) = .Zo(aj — ay41) Dj(x) + a,D,(x) = ZOAaJ-DJ-(x) + a,D,(x), (30.10)
J= Jj=

where da; = a; — a;,,. Supposing A%a; = Aa, — Aa;,, and again using Abel’s
transformation, we find

n—-2 Jj n—1
Sp(x) =Y 4%a; Y, D,(x) + Ada,_y Y. Dy(x) + a,Dy(x). (30.11)
j=0 p=0 p=0
An expression of the form
1 J
Kj(X) = H—IPZODD(X) (3012)

is usually called a Fejér kernel of order j. We will study it in more detail in § 47. Here
we shall refer to the fact that K;(x) > 0 for all x (see (47.5)). From (30.11) and (30.12)
it immediately follows that

n—2
Sp(x) =3 (j+ DA%a,K;(x) + nda, s K,_;(x) + a,D,(x). (30.13)

j=0
If x &= 0 (mod 2x), then since a, — 0 the last term of the right-hand side of (30.13)
tends to zero as n — co. Moreover, at x = 0 (mod 2x) from (30.12) and (29.3) we
note that K,(x) always remains finite as # - o0 and nda,_, — 0 for the convex se-
quences {a,} (see Introductory Material, § 3) and therefore nda, K, ;(x) - 0 as

n — oo. Hence for x #= 0 (mod 2x)

fx) = Ii:n S(x) = Zl(j + 1) 420, K,(x). (30.14)

It is not necessary for us to prove the very existence of the limit, since the con-
vergence of series (30.1) for all x, apart from x = 0 (mod 2x), was established for
a, l 0, without the hypothesis of the convexity of {a,}, in Theorem 1 of this section.
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Thus, from (30.14) we conclude that the sum f(x) of series (30.14) is a non-negative
function, because all4%a; > 0 and K,(x) > O for all x.

It remains for us to prove that the series (30.1) is a Fourier series of f(x). For this
purpose we note that because

f)=—+ Z a, cosnx (30.15)

and because a, | 0 the series on the right-hand side of (30.15) converges uniformly in
(g, 7) for any ¢ > 0, then

kg sinne

ff(x)dx— -—fdx+ Z a,,fcosnxdx— (- &) — Za,,

(30.16)

From a, l 0 due to Theorem 2, it follows that the series ) (a, sinnx)/n converges
uniformly in [0, 2x], which means that its sum is continuous in this interval, and
therefore the series on the right-hand side of (30.16) has a sum which tends to zero
as ¢ —» 0. Hence it follows that

T

im | £ dx = L a. (30.17)
s3>0 2

But since f(x) >0, then from the existence of the limit on the left-hand side of
(30.17) the summability of f'(x) in [0, ] follows, and because f(x) is even, this gives

fnf(x)dx=2 ff(x)dx=ao:n:,
-7 0

whence

= % fnf(x) dx.

We will now prove that at any k = 1, 2, ... we have

:zl»—

f f(x)coskxdx.

For this purpose, multiplying both sides of (30.15) by cosk x and integrating in the
interval [¢, n], we find

n 7
—1

f f(x)coskxdx = o f coskxdx + Z a, | coskxcosnxdx

n=1
13 £

n

+ a, f coslkxdx + ) a, f coskx cosnx dx. (30.18)
n 1

=K+
4
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Ase — 0each of the integrals f coskx dx andf coskxcosnxdx(n=1,2,...k—=1)
tend to zero. Then s

lim | cos?kx dx = fcoszkx dx = i.
e>0 2

Finally

@ . ® : cos(k + n) x + cos(n — k) x
a, | coskxcosnxdx = a, f dx
n=;+1 f n=;+l 2
_ < , [ sin(k + n) ¢ sin(n — k)¢ ] (30.19)
n=F+1 2(k +n) 2(n — k)

and arguing as previously, we see that as ¢ — 0 the right-hand side of (30.19) tends to
Zero.
Thus, from (30.18) we obtain as e —» 0

f f(x)coskxdx = a, ;
0

and taking into account the evenness of f(x)

:1}—-

f f(x)coskxdx.

Thus, series (30.1) is a Fourier series of f(x) and the proof, therefore, is concluded.
COROLLARY. Since the sequence 1/lnn (n = 2, 3, ...) is convex, then from the given
theorem it follows in particular that: the series

> cosnx

(30.20)
is a Fourier series. #=2 Inn

o
It is also known that ) (si. nx)/Inn is not a Fourier series (see § 40), therefore we
n=2

see that a series conjugate 10 a Fourier series is not necessarily itself a Fourier series.
Note. It will be useful to us later to know that the partial sums of series (30.20)

satisfy the condition
2m

[ 18,1 dx < C, (30.21)
[

where C is an absolute constant.
Indeed from formula (30.13) we obtain
27

[ 18.(x) dx
1]

n—2 2 2n 2n
<S(j+ DAa | K(x)dx + nda,_ | K, ,(x)dx + a, [ | D,(x)] dx.
0 0 0

j=0
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2n

But since f |D,(x)| dx < Alnn, where A is a constant (see § 35) and
0

2z

fK(x)dx= ! Z D,(x)dx = =,
°5

then

n—2

flS,,(x)ldx <m [ Y (j+ 1)4%a; + nAa_l] + Aa,Inn.
=0

0

This formula is true for any a, | 0 forming a convex sequence. Therefore, taking

into account that for such sequences Z (+ DA%a, < + oo (see Introductory Ma-

terial, § 3) we have J=
27

f | Sp(x)| dx < Aa,Inn + B,
0

where 4 and B are constants. For the case we are considering when a, = 1/Inn, sup-
posing that 4 + B = C, we see therefore that (30.21) is valid, i.e.

2n

| &= coskx
f kzl Ink
0

dx<C (n=1,2,..). (30.22)

§ 31. Integral expressions for the partial sums of a Fourier series
and its conjugate series

In order to study the question of the convergence of a Fourier series in the whole
interval [— 7, zz] or at any point of it, it seems very convenient to represent the partial
sum of the series in the form given it by Dirichlet.

Let

o(f) = + + Z (ax coskx + b, sinkx) 311

and

S,(x) = — + Z (@i coskx + b sinkx). (31.2)

Substituting in (31.2) the expressions for a, and b, from the Fourier formulae, we find

S,(x) = 21—” ff(t)dt +él [(;lt—ff(t) cosktdt) coskx

+ (;E ff(t) sinktdt) sin kx}

—J
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= — f J@ [ + Z (cosktcoskx + sinkt smkx)] dt

*ff(t) [ +Z cosk(t~x)} dt——ff(t)D(t— x)dt, (31.3)

where D,(u) is a Dirichlet kernel (see § 29) and therefore

1
sin (n + E) u

D,(w) = (31.4)
L ou
2 sin >
Supposing t — x = u, we obtain from (31.3) and (31.4)
k24 7T : 1
1 1 sin (n + 5) u
S, (x) = - ff(u + x) D, () du = P ff(u +x) —— = _du. (31.5)
g —n 2 sin 3

If we have to consider simultareously the Fourier series of several functions, for
example, 1, g, v, we will write S,(x,f), S,(x,g), S,(x, ) in order to distinguish
between their partial sums. Usirg this notation, we note immediately that it follows
directly from (31.5) that

Sn(x,fl +f2) = Sn(x,fl) + Sn(x’fZ), } (31 6)
Sn(x9 Cf) = CSn(xﬁf)a '
and if f(x) = ) fi(x), where the series converges uniformly, then
k=1
Sn(x1f) =kZlSn(x1fk) (317)
(because uniformly convergent series can be integrated term-by-term).
We will also note that since
1
D) <n+
for any x, then in every case
2n
1
s < (n+ 5) [ rorar, GLY)
0

and although this estimate in the majority of cases is rough, it is, however, sometimes
sufficient.

In investigating the problems of the convergence of formula (31.5), the series
is usually transformed, but before going into this question, we will remark here that
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the partial sum of the series conjugate to (31.1) can be written in a similar manner,
i.e.
Y (—bycosnx + a,sinnx).
k=1
Thus, supposing
Sp(x) = Y (= by coskx + a sinkx),
k=1

we find following a similar argument

2n
S0 = -+ [ra b - nar, (31.9)
where °

D, () = ki_lsinku.

The kernel D, (u), conjugate to the Dirichlet kernel, as we have seen (see § 29), has

the form
u 1
3 cosi—cos(n+3)u
D,(x) = , (31.10)
. u
2sin 3
therefore
t—x 1
_ | = €0§ ——5—— — COs (n+7)(t—x)
Sy(x) = — — f 1) dt  (3L11)
i 2sin i
e § 5
or
u 1
B 1 » cos——cos(n+7)u
Su0) = - — ff(u + %) du. (3112
u
n 2 sin 2

Now for the transformation of formulae (31.5) and (31.12) to more suitable forms,
we will prove an important lemma.

Lemma. If f(x) is summable, g(x) bounded and both possess a period 2x, then the
integrals

[ fGx + t)g(t)cosntdt and [ f(x + 1) g(t) sinnt dt (31.13)
tend to zero uniformly as n — .

Proof. Let
v() =f(x + 1) g(0).

If x is fixed, then y,(¢) is a summable function of the variable ¢ and therefore it is
clear that the integrals being considered only differ by a constant multiplier 1/= from
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the Fourier coefficients of this function. Thus for every x the integrals (31.13) tend to
zero as n — oo . But the significance of the lemma is to prove how uniformly they tend
to zero.

Following the argument of § 21, we have

n t

fy)x(t) cosntdt | < f ’sz (t + %) — (D)

— —n

and similarly for sinnt. Therefore it is sufficient to prove that

dt

k4

J

-—7T

tends to zero uniformly with respect to x as n — 0. But

dt (31.14)

v (14 5) =90

b1

—fﬂjw,(t+ %) — p,(7) dt:_f f(x+t+ %)g(t+%) ~fx+t)g@)|dt
<ff(x+t+%) —flx+ 1) ig(t+%)’dt
+ f fx+ 1) ;g(t+%)—-g(t) dt. (31.15)

Noting that g(¢) is bounded and has a period of 2x, then [g(?)| < M for any ¢,
and also remembering that f'(¢) also has period 27z, we find for the first of the integrals
on the right-hand side of (31.15)

(+3)
g n

dt<an}f(t+%) - f@)

dt

flf(x+t+%) — fx+ 1)

dt

<Mﬂf(x+z+%) —f(x+ D)

< Mo, (%f) (31.16)

where w,(d,f) is the integral modulus of continuity of f(x) (see Introductory Ma-
terial, § 25); we already know that w, (J, f) tends to zero as § — 0 for any summable
J(x). Since x no longer figures on the right-hand side of the inequality (31.16), we
obtain

f)f(x+t+%) —fx+1) }g(t+%)!dt_)0

uniformly relative to x as n — co.
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For the estimate of the second integral of formula (31.15), we take any ¢ > 0 and
resolve f(x) into the sum of two functions f,(x) and f,(x), of which the first is
bounded, for example, | f; (x)| < K and for the second

[1f£01dt < e.
Then

dt

flf(x+ ol (r+ ) - s

<Kf‘g(t+%) —g(t)!dt+ } folx+10) {g(t+%) — g() | dt
< Ko, (%,g) +2M—f fo(x + 1) | dt < Ko, (%,g) +2Ms.  (3L17)

Since w, (zz/n, g) — 0, the number ¢ is arbitrary and x does not enter into the right-
hand side of (31.17), then the left-hand side of (31.17) tends to zero uniformly and
the proof is concluded.

Note 1. Our lemma holds if instead of the integrals of (31.13) we consider the inte-
grals

b
ff(x + )g(t)cosntdt and ff(x + t)g(t) sinnt dt,

where @ and b are any two points in [—x, 7z]. Indeed, it is sufficient to assume that

g(t) in [aa b]’
a1t = : 0 outside [a, 5],

which would reduce this case to the preceding one.

Note 2. In carrying out the proof we never made use of the fact that n is an integer.
Therefore the lemma holds if # — co passing through all real values.

Note 3. It will be useful later to know that our lemma holds if instead of g(¢) we
consider the function g,(¢) for which the following conditions are fulfilled

- <X <wn,
a Hnj <M for
(@) lg:()I < mctan

and moreover as 4 — 0
(®) [1g:(t + B) — gu(1)ldt—>0

uniformly relative to x in [—x, 7].
Indeed in this case the proof of the lemma is exactly the same.
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Note 4. If f (x) is a continuous function, then from the given proof we obtain

ff(x + t)g(t)cosnt dt | < Aw (%,f) + Bw, (%,g) ,

fnf(x + t)g(t)sinntdti <do (%f) + Bw, (%,g),

where w(d, f) is the modulus of continuity of f(x) and 4 and B are constants.

In fact, in formula (31.16) when f'(x) is continuous, 2w w(n/n, f) can be substituted
for wy (z/n, f), and as f(x) is bounded, the second integral of formula (31.15) does
not exceed Bw, (z/n, g) where B is a constant.

§ 32. Simplification of expressions for .S,(x) and g‘,,(x)

We will now use the lemma proved in § 31 to simplify the expressions for S, (x)

and S,(x) (see (31.5) and (31.11)).
We will first note that

1 u u
sin (n + —) u sinnucos — + cosnusin - .
2] 2 2 _osimnuw L s, (2.0t
2 in-li ZSini 21 d 2
) 2 )

We will also note that the function

1 1 (32.2)

u u
2tg-2*

g(w) =

is continuous in [—z, #]. The only uncertainty could be caused by the point u# = 0;

but, using L’Hopital’s rule, it is easily seen that lim g(x) = 0. We still require that
u->0
g(u + 2x) = g(u); then g(u) is bounded in (— o0, + ©0).
From (32.1) and (32.2) we obtain

) 1
sin (n + E) u sinnu

2 sin =
Sln2

1
+ g(u) sinnu + - cosnu. (32.3)

1 The Continental abbreviation “tg” is used for “tangent” throughout this work (Translator).
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Therefore from (31.5) we obtain

sinnu

u

S (x) = % ff(u + x) du + % ff(u + x)g(u) sinnu du

1 21
Sy ff(u + x) cosnu du. 32.49)

The last two integrals of formula (32.4) tend to zero uniformly as # — oo due to the
lemma of § 31 and since g(u) is bounded. Therefore

sin

:" du + o(1), (32.5)

1
5.0 = [ 1@+
where o(1) is a magnitude which tends to zero uniformly. We will frequently use this
fact.
Note. It is sometimes important to estimate the magnitude o(1) more exactly;
therefore we will now show that if f(x) is continuous, then from Note 4 made at the
end of § 31, the modulus of each of the last two integrals in (32.4) does not exceed

Ao (%f) + Bo, (%,g), (32.6)

where 4 and B are constants. But since g(u) is a function of bounded variation and for
such functions the integral mo 'ulus of continuity w,(d) has the order O(d) (see
Introductory Material, § 25), then (32.6) is a magnitude of order

) [w (’5 f)] +0 (%) (32.7)

Finally, having noted that for any continuous function f(x) the modulus of con-
tinuity w(d, f) does not exceed O(6), we conclude that in (32.7) the second term is
either of the same order as the first or is infinitely small of a higher order. Therefore
finally, supposing that

§.(x, f) = -71; f Fl+ % Si’;"" du, (32.8)
we find from (32.5) for continuous f(x)
5,00 = S ) +0 [o (%) (329)

When f(x) is any summable function, it is sometimes useful to estimate

27
18.(x,f) — Sulx, )l < C J Lf ()| dx, (32.10)
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where C is an absolute constant. This estimate is obtained directly from (32.4) and
(32.8) if it is remembered that the function g(u) is bounded.
After this remark which will be useful later, let us return to the simplification of

formulae for partial sums. We wish to simplify the expression for S,(x). For this
purpose we note that (see (31.10))

u 1 u u
cosz-—cos n+=lu COS — — COS — COSnu

I—),,(u)= 2 2 2 4 sinnu
. u . u 2
2sm5 2511‘15
_ 1 — cosnu 4 sinnu' G2.11)
u 2
2tg‘2—

Hence if the lemma of § 31 is used, we immediately obtain

5,(x) =——ff(u+ x) L= cosnu

T COSHY 1w + o(1).

2tg—+ 5
If the function g(u) is used again, then another expression can be obtained for
S,(x). Namely, if we write
- 1 — cosnu sinnu

D,(u) = — + g() (1 — cosnu) + 7

then, again using the lemma of § 31 we obtain

5,00 = — —ff(u PR el L %ff(u+ X g@du + o(l),
and since the second integral is O(1), then
S, = — — ff(u + %) ——M du + 0(1) (32.12)
or N
S,(x) = ;l;f [f(x + 4) — f(x — )] —cf’i’li‘-du +0(1). (32.13)
[1]

For future reference it will also be useful to note that, if § > 0 is arbitrary, and
f(x) is bounded, then it is possible to rewrite (32.13) in the form

— COSnu

Sp(@) = — — f [fx+w)—flx-— u)] —du + 0(1), (32.149)

since the discarded integral f is O(1).
[
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§ 33. Riemann’s principle of localization

In § 32 we found a suitable expression for the partial sum of the Fourier series,
from which an important corollary can easily be drawn. First, taking any 6 > 0
and denoting by g(u) a function, defined thus

0 in (—6,6)9
glw) = ;ll_in (—=m, —68) and (4,n),

g(u + 27) = g(u),

on the basis of (32.5) we can write

] F:3
S,(x) = % f @+ % S"’u"" du + —71; f fu + x)g) sinnu du + o(l),
iy -

and since g(u) is bounded and periodic, it follows that

smu"“ du + o(1), (33.1)

é
1
5.0 = - [ 1w+
s

where again o(1) tends to zero.} This formula allows the following extremely im-
portant theorem, known as Riemann’s principle of localization, to be expressed.

RIEMANN’S THEOREM. The convergence or divergence of a Fourier series at a point x
depends only on the behaviour of the function f (x) in the neighbourhood of the point x.

In fact, the value of the function f(x) outside the interval (x — 8, x + d) does not
figure at all in formula (33.1), and therefore the question whether S,(x) tends to a
limit as #n — oo depends only on the behaviour of £ (x) in this interval. Moreover, since
in formula (33.1), as has already been proved, o(1) tends uniformly to zero, it is
possible to judge the uniform convergence of S,(x) in any interval by whether the
integral on the right-hand side of (33.1) tends uniformly to a limit.

This result is appropriately expressed in the form:

THEOREM. If two functions f(x) and f,(x) coincide in some interval [a, b), then in any
interval [a + €, b — €] where ¢ > 0, their Fourier series are uniformly equiconvergent,
i.e. the difference of these series converges uniformly to zero.

Indeed, let
Fx) = fi(x) — fo(x).

1 We draw the reader’s attention to the work by Hille and Klein!!1 where it is proved that

[ 2n

1 i 1

s =5 [ 160 T | < 5 [ [ veiar+1]an (5.0)-
—é8 0

Here v, (4, f) is the integral modulus of continuity of f(x) and X is an absolute constant.



104 BASIC THEORY OF TRIGONOMETRIC SERIES

Then f(x) = 0in [a, b]. Let a number 6 > 0 be chosen such that § < ¢ and x is any
point of the interval [a + ¢, b — ¢]. Then u + x€ [a, b] for —§ < u < § and there-
fore f (u + x) = 0; from formula (33.1):

S,(x) =0(1) in [a+¢ b—c¢],

where o(1) tends uniformly to zero in [0, 27]. This means that the Fourier series of
J(x) converges uniformly to zero in [@ + ¢, b — ¢€].

§ 34. Steinhaus’s theorem

A useful corollary can be derived from the preceding results, It is due to Steinhaus!3!
and can be expressed in the following form:

If A(x) is a periodic function, satisfying Lipschitz’ condition of order 1, then the series
a(Af) and A(x) o (f) are uniformly convergent in [— =, 7).

In fact, we have

S,(f) = ;lt—ff(x + A + 1) Sint”—t— dt + o(l),

sinnt
t

1 k11
A0S, (f) = — ff(x + 1) A(%) dt + o(l).

Therefore, supposing

Ax + 1) — A®)

glt) =

we have
S,(Af) — A() S, (f) = % ff(x + t)g. () sinnt dt + o(1). (34.1)

In order to prove that the right-hand side of (34.1) tends uniformly to zero, it is
sufficient to apply to it the first part of Note 3 of the lemma in §31, providing only
that the limitations imposed there on g, (¢) are fulfilled. But the condition

lg(D] < M
uniformly with respect to x and ¢ is the result of the fact that g,(¢) satisfies the Lip-

schitz condition of order 1; it remains to prove that

7T

[ 18-t + h) — gD dt = o(1)

Zn
uniformly relative to x as A — 0.
To do so, taking ¢ > 0, we will consider an interval of length (— ¢, €); in it we have

[ lgelt + B) — go()] dt < 4Me.
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If te(—m, —¢) or te(e, ®), then for any # it is possible to find 4 such that the
expression under the integral sign for all ¢ in the considered interval will be less
than 7, and therefore the corresponding integral less than =#. This concludes the
proof of the theorem.

a0

sin x
§ 35. Integral f — dx. Lebesgue constants
0
Before continuing with the study of the convergence of a Fourier series, we should
mention certain properties of the expression

smnt

D, (1) = -

which we will call a simplified Dirichlet kernel. Let us note first that from formula
(33.1), taking into account the evenness of the simplified Dirichlet kernel, we im-
mediately find that 5

Su) = f LFGe+ ) + £ Cx — )] =

(35.1)

du + o(1). (35.2)

If we consider the case f(x) = 1, then S,(x) = 1 for any n, and therefore
8
2 sinnu
1= ;t—f ” du + o(1). (35.3)
0
Supposing nu = t, we then find that

t
1——f“idt+o(1),

and therefore
né

sint 4
lim f T‘ dt = —.

n—» oo 2

Hence it immediately follows that

0

sint 7
f e dt = PE (35.49)
0

i.e. this improper integral has meaning and we even know its magnitude.
From the existence of this integral it follows that: if 4 > 0 and &’ > 0, then
(4 nod’
sinnt . sint
lim dt = lim 5 dt = 0. (35.5)

n->o0 n—ow
J

nd
This formula will be necessary later.

5 Baryl
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We note that it is necessary to understand the existence of the integral (35.4) geo-
metrically; therefore we will dwell somewhat on this problem, although it should be
known to the reader from courses on analysis.

Y
|
Yy
X;/\ U J/—'\{ 5
-37 -2 ~——Z7 0l T~——"27x U 3m
FiG. 5

0
The convergence of the integral f [(sin?)/t] dt could also be proved in another way.

Supposing (Fig. 5)
e+ )

sint
U, = f Tdt *k=012,..),

kn
we see that

E4

; sin(z + kn) . sint
e = fﬁ‘”— (=1 ft gy s
1] 0

whence it follows that the series Y u, alternates its signs, whilst its terms monotonically
k=0
decrease in their absolute value and tend to zero, since

"f st 1L
[ug] = Py - <7 =1,2,..).
0
But according to Leibniz’ well-known theorem this type of series should converge.

On the other hand it is clear that when the sum ) u, has meaning, then it is the inte-
gral (35.4). Thus,

o0
i J‘ s1nu 7T
=0 d T2
0
We now note that
Z U < Up,
20
whence p
7 sinu
E<u°=f ” du < m. (35.6)

0

Thus from the monotonic nature of u, and the alternating of their signs, we see
that if 4 and B are any two numbers such that 0 << 4 < B, then

B
sint
- dt | <. (35.7)

A
Because of the evenness of (sin?)/¢, this is also true if 4 < B < 0.
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Finally, if 4 and B are of different signs, then dividing the integral by two, namely
from A4 to 0 and from 0 to B, we find that

B

sint
— dt| < 2m.

A

This simple statement will be very important to us later, since it follows from it that

for any a and b we have
b

i t
f Smt" dt| < 2x, (35.8)
because
b nb
i t int
f S";" dt| = f fl—tn—-dt <2 (35.9)

by virtue of (35.7).

Now the fact that the integral of (35.8) is bounded is solely due to the interference
of the positive and negative sinusoidal waves. If the modulus of the expression under
the integral sign were taken, then the result would be completely different. We will
prove that

0

sinnt

t

dt

increases without bound on increase of » and we will even estimate the order of its
growth exactly. This will be very important later.

Let
| sinnt sinu
I, = f 1 dt = f du. (35.10)
t u
0 0o
Then it is clear that
(n+Dx A
sinu sinv
In+1 - In = J‘ du = f d
u v + nmw
nr 0

and since at 0 < v < 7, we have

1 | 1
< < - =1, 4,...)s
m+Dx  v+nn nw (n=12..)
and
fsinvdv=2,
0
then

2 2
— <Ly — I, < —. .
s R AT A (35.11)
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Letting n run through the values 1,2, ...,m — 1 and summing the inequalities
(35.11) we find

2 m-— m—1 2m=1 |
— < n-- - " - —
75,,; ,,;1(['1 7'6,,; n
or
2 m 1 2 m-1]
— ) —<I,< — —.
Il+nn;2n\lm Il+n;n
But taking into account that
1 1

l+ -+ + —xInm,
2 m

where &~ denotes an asymptotic equality (see Introductory Material, § 11), we find
I,, ~ Inm. Thus, we find

nw

|sinu| 2
du=1I,~ —lnn. (35.12)
u 14
0

Thus, I, increases infinitely with increase of n, and we also see the exact order
of this increase.
It immediately follows from (35.12) that

nrn

. sinu
lim du = + o0,
n=> 0
i.e. the integral
o)
sinx

f = dx = o0, (35.13)
0

which means that the integral (35.4) is known to converge only conditionally, not
absolutely.

From formula (35.12) we will derive a corollary, which will play an important role
later.

A Lebesgue constant is defined by the expression

1 k(4
= ;f | D, ()] dt, (35.14)

where D,(t) is a Dirichlet kernel.
Since D,(t) is an even function,

2
= ;f |D,(1)| dt.
0

But we know (see § 32) that
sinnt

Dy(1) = + 0(D),
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and therefore

whence
and due to (35.12)

Thus

1 4
L, = - f | D, (1) dt ~ ;Z—Inn. ‘35'15)

It can be proved similarly that for a kernel conjugate to a Dirichlet kernel the integral
of the modulus has the same order of increase, i.e. it increases as In#.
To prove this, we will consider an auxiliary integral, namely

7tf2

-
J, = f bl 7Y (35.16)
sint

0
Since
sin’nt n

=Y sin(2k — 1)¢
k=1

sin¢

(which is proved directly by multiplying both sides by sin¢ and changing the product
of sines to the difference of cosines), then

72

n n 1
=Y f sinQk — Dtdt =) —— ~Inn (35.17)
k=10 k=1 2k -1

(here and later, we will not calculate the constant exactly but will simply write
U, ~ Uy, if A < u,fv, < B, where A and B are positive constants).
Let us now consider

1 [ 2
0= — f | D) dt = = f |D,(2)| dt.
el :

Since (see (32.11)) 1 — cosnt sinnt

Dn(t) = ”t ! + 2 Aa
)
then we have
.. n
sin? —¢
— 1 — cosnt
D,(H) = — + o) = — +0()
2sin — sin —
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(because 1 1 1 l: P 1] 1 t t)
e — = cos — — = - —tg—]).
t 1 Lt 2 2 4
2tg54 2sm5 251n—5
Therefore
t
fa2 72
2 | 7 dt 01—4f5in2"”d o) =21 +o0a
Qn_; 1 + ()_n sinu u+ ()—7!"+ ()>
sin - 0

0

and therefore

Thus,

0, ~ lnn.

L D,(t)|dt ~ Inn, (35.18)
T

and this is what we wanted to prove.

§ 36. Estimate of the partial sums of a Fourier series of a bounded function

From the results of the preceding section we immediately obtain the following
theorem:
LEBESGUE’S THEOREM. [If f(x) is a bounded function

lf) <M,
then forn = 2,3, ...
1S,(0)| < CMInn, 0<x<2n (36.1)
and
1S,(x)] <CMInn, 0<x<2n, (36.2)

where C is an absolute constant.
Indeed (see (31.3) and (35.15)),

1,00 = %ff(t)D,,(t—-x)dt <M;1T—f|D,,(t—x)|dt = ML, < CM Inn

and similarly (see (31.9) and (35.18))

[S,(x)| < CMInn.

The theorem is proved.

Note 1. It could be thought that formula (36.1) is extremely rough; in fact, it can
be proved that for a bounded function the partial sums of a Fourier series should be
bounded. However, this is untrue even for continuous functions. If the Fourier series
of a continuous function converged uniformly towards it, then such a bound should
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occur; but we will see later that for continuous functions Fourier series can converge
non-uniformly, and can also diverge and even have unbounded partial sums in an
infinite set of points.

Note 2. If f(x)e L[0, 2x] and | f(x)] < M in some [a, b] = [0, 2x], then in any
[/, b],a <d < b < b, wehave

1S,()] < AMInn + % f]f(t)] dt (n=23,..), (36.3)

where A is an absolute constant and § = min(e’ — a, b — ¥).
Indeed, since .

S,(x) = % ff(t + x)D,(r) dt

']
1 1
= ff(z + x)D,(t)dt + P f f(x + D) dt, (36.4)
—é [~n,7]—(—6,6)
then by choosing d so that 6 = min(a’ — a, b — ¥’), we see that at xe [@, b'] the
argument ¢ + x in the first integral does not go outside [a, b] which means that

! é T

%ff(t + X)D,()dt| < M;l; f]D,,(t)]dt < AMlnn, (36.5)
6 -7

where A is an absolute constant.
But since outside (— 0, d) we have | D,(f)| < /6 then for the second integral in
(36.4) we find

‘% f f(x+)D,()dt

[—m,n]—(—6,8)
Combining (36.4), (36.5) and (36.6), we obtain (36.3). Instead of (36.3) we can also
write [S,(x)| <CMInn as n >N,

< % f Lf ()] dt. (36.6)

where N varies with M, é and f |f(@®)| dt, since if N is sufficiently large, then at

n > N the second term of forml;la (36.3) becomes less than the first.

§ 37. Criterion of convergence of a Fourier series

Let us return to the problem of the convergence of Fourier series. We want to find
the conditions under which o (f) converges at some point x to some value S.
For this purpose we first remark that it follows from (33.1) that

sin
{

Sa(x) = %f [fG+1)+ f(x —1)] nt dt + o(1), (37.1)
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where o(1) signifies a magnitude tending uniformly to zero in [—, x]. Moreover,
multiplying both sides of equality (35.3) by S we have

é
2 sinnu
S = ;fS ” du + o(l). (37.2)
0
From (37.1) and (37.2) we now find that
3
1 sin nu
Sy(x) — S = ;f[f(x +u) + f(x —u) — 2S] ” du+ o). (37.3)
0

It is clear from this that for the convergence of o(f) to the value S at the point x
it is necessary and sufficient that

[

Im | [f(x+ @)+ f(x—u) —25]

n—»w

sinnu

—du=0. (37.4)

If we wish the series o (f) to have a “natural sum” at the point x, i.e. a sum equal
to f(x), then it is necessary and sufficient that

s

m | [f( + 4) + f(x = #) — 27 ()] Sinu"” du = 0. (37.5)
Supposing Pul) = F(x + 1) + f(x — w) — 21 (¥, (37.6)

we can therefore formulate this statement:
For the series o (f) to converge to f (x) at some point x, it is necessary and sufficient
that 5
sinnu

lim | g.() du =0, (37.7)

n-»w u
0

where 0 > 0 and ¢,(u) is defined by formula (37.6).

If the function £ (x) is continuous in some interval (a, b), then it is possible to raise
the question of the uniform convergence of the series o (f) to f(x).

Given any ¢ > 0. From the continuity of f(x) in the interval (a, b), it follows that
it is continuous and therefore bounded in the interval {a + ¢, b — &]. Therefore, if
(35.3) is multiplied by f(x), we have

sinnt
4

s
2
fx) = - ff(x) dt + o(1), (37.8)
0

where o(1) tends uniformly to zero in [a + ¢, b — ¢]. From (37.1) and (37.8) we then
derive

[
5.9 = £ = 3 [ 76+ + 76 =) ~ 27 ()
0

smu"“ du + o(1). (37.9)
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Here 6 can be taken as any number. Therefore if we take 6 < ¢, then for
xela + e,b — ¢] and |u| < & we will have u + xe(a, b) and u — xe(a, b), and
then ¢, (u), defined by formula (37.6), will be still more continuous in (a, b). Hence,
using (37.9), we can conclude:

If f(x) is continuous in (a, b) and given any ¢ > 0, then for uniform convergence of
the series a(f) in [a + €, b — €], it is necessary and sufficient that

[}
sinnu

lim | ¢,(w) du=20

nsw u
0

uniformly in [a, b]; here 8 is any number satisfying the inequality 0 < 6 < &, and @, (u)
is a function defined by the equality (37.6) and continuous for

at+e<x<b—e, |ul<d.

§ 38. Dini’s test

The conditions that have been obtained for convergence (and for uniform con-
vergence), even though they are necessary and sufficient, are very difficult to apply.
Therefore we derive from them a series of tests which will be sufficient only for con-
vergence (or for uniform convergence) but are frequently found to be very useful in
simple and important cases.

Before deriving these tests, we will give a definition.

DerFiniTioN. Following Lebesgue, we say that the point x, is regular, if f (x, — 0)
and f(x, + 0) exist and if

S(xo) =

o +0) + fxo — 0)
5 .

It is clear that any point of continuity is regular; also the points of discontinuity of
the first kind will be regular, that is, those in which the magnitude of the function is
the arithmetic mean of its limits left and right.

Let us prove the following theorem:

Dini’s test. The series o(f) converges to f(x) at every regular point x, where the
integral

: d
Jire+ a4 76— - 270015
0

has meaning.
Indeed, if this integral has meaning, then it is possible for any ¢ > 0 to choose 7
so small that

flf(x+u)+f(x—u)—2f(x)|%<s.
0

Then for any n, since |sinnu| < 1, we have

sin nu
du| < e.

u

f[f(x+u)+f(x—u)—2f(X)]
0

5a Baryl
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But by virtue of Note 1 of the lemma in § 31

f ECZDEICEDES

u

] sinnudu—0 as n- w.
7
From this, it follows that

]

lim | [f(x+w+flx—w — 2f(x)]

n->» 0

sin nu
du=0
u

and from (37.9) it follows that the convergence is proved.
In particular, if it is supposed that

Px@) = f(x + w) + f(x — u) — 2f (x).

then Dini’s test gives: if the function f(x) is continuous at the point x and
[
x
f LE)L dt (38.1)
0

has meaning, then o (f) converges to f (x) at the point x.
A number of corollaries can be derived from this. For example, if f (x) in the neigh-
bourhood of the point x satisfies the Lipschitz condition of order « > 0, i.e. if

f(x+u) —f()] < Klul*

for [u| < 6, then the integral (38.1) has meaning, which signifies that o (f) converges
to f(x). If the function f(x) has a finite derivative at the point x, then in the neigh-
bourhood of this point it satisfies the Lipschitz condition of order « = 1 and there-
fore:

At the point x, where f (x) possesses a finite derivative, its Fourier series converges to
it.

In particular, if f (x) is differentiable everywhere in (— n, ®), then its Fourier series
converges everywhere in this interval.

§ 39. Jordan’s test

As is known, any function of bounded variation is the difference of two non-
decreasing bounded functions. If the function is monotonic, then it only has a dis-
continuity of the first kind. Moreover, if a function of bounded variation is continuous,
then it is possible to represent it as the difference of two continuous non-decreasing
functions.

We use the facts to prove the following theorem:

JORDAN’Ss THEOREM. If f(x) is of bounded variation in some interval (a, b), then its
Fourier series converges at every point of this interval. Its sum is f(x) at a point of
continuity and [f (x + 0) + f(x — 0)]/2 at a point of discontinuity. Finally, if (', b')
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lies entirely inside the interval (a, b), where f (x) is continuous, then the Fourier series
converges uniformly in (a', V).

From remarks made earlier, it is clear that it is sufficient to prove the theorem for
the case of non-decreasing f (x). In this case, supposing

fx+0)+f(x—0)
S = 5 ,

we see from ,
S+ +fx-—w)=28=[fx+ ) ~=fx+ 0] +[f(x—w) - f(x - 0],

that at a fixed x, each function in brackets is a monotonic function of u. We will
now estimate

sin

nu
—du. (39.1y

8
[re+a-r6+ o
0
Here ¢ is chosen so that x + de (a, b). But whatever ¢ > 0, it is possible to take
0, < 0 so small that

fx+u)—f(x+0)|<e 0<u<?,.

Since f(x + ¥) — f(x + 0) does not decrease and is non-negative, then applying
the second mean value theorem we see that

sin nu
du
u

Jre+a -6+ o
0

sinnu

” du, (39.2)

[
=[G+ 89— S+ 0 |
[

where 0 < 0, < ;. But since (see (35.7))

.1 |
sin nu
du
u

4z

<7

for any positive 4, and §,, then the modulus of integral (39.2) does not exceed me.
On the basis of the lemma of § 31

sin nu
du| < 2me,
u

]
fvu+w—fu+m
0

if n is sufficiently large.
In the same way,

sin nu
du.

u

é
fvu—w—fu—m
0

is estimated.
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Therefore, for sufficiently large »

sin nu

dul < 4dme.
u

s
f[f(x +u)+ f(x —u—285]
0
where ¢ is as small as desired, and then on the basis of the convergence test of § 37
we see that the series converges at the point x to the value S.
Now let f(x) be continuous in some interval [a, b], and [a/, '] be any interval
lying completely within (a, b).
It is possible to choose 6, so small that

fx+w—-fO)l<e and |f(x—w) —-f(D)]| <e¢,

ifd <x <V and 0 <u < d,. If this is so, then in the preceding estimates of the
integrals, x can be taken anywhere in (a’, #”) and therefore

sinnu
du| < 4me
u

Jrre o+ 76— - 27 )
0

for @’ < x < ¥, because of the test in § 37, which means that the series converges
uniformly in (&, &’).

Jordan’s theorem has been proved.

From the given theorem, it follows in particular that if £ (x) is of bounded variation
in the whole interval [—m,n] and continuous in it, whilst f(—n) = f (%), then its
Fourier series converges uniformly in — oo < x < + o0,

Therefore: the Fourier series for any periodic absolutely continuous function con-
verges uniformly to it in — o0 < x < + 0.

Note. An important particular case of the given theorem was considered by Dirich-
let. He investigated the case when the function f(x) is bounded and has only a finite
number of maxima and minima and no more than a finite number of points of dis-
continuity. For these functions he proved the convergence of the Fourier series at
every point. It is clear that these functions are all of bounded variation.

§ 40. Integration of Fourier series

Let f(x) be summable and
J(x) ~ 322 + Y (a,cosnx + b, sinnx).
n=1

Let us denote the primitive of f(x) by F(x). Then

—b,cosnx + a,sinnx

Qo
S x+C+ Y - , (40.1)

F(x) =

whilst the series on the right-hand side converges uniformly.
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This theorem is due to Lebesgue. In order to prove it, it is sufficient to note that
F(x) — (ao/2)x is the primitive of f(x) — a,/2, it is absolutely continuous and hasa
period 27 (see § 23, No. 8).

Therefore, the Fourier series for F(x) — (ao/2)x converges uniformly to it. But it
has the form (see § 23, No. 8)

X

—b,cosnx + a,sinnx
. .

This concludes the proof.
As a corollary, we obtain for any ¢ and b

b o —p,cosnx + a,sinnx [
+ 3 ,
a n=1 n a

b
f FO)dx = a‘;x

i.e. Fourier series (even divergent) can be integrated term by term in any interval.
Corollary. In formula (40.1) the series converges for all x; in particular, at x = 0;
but this indicates the convergence of the series

Ms

by
b

I

n=1

0
Thus: for any Fourier-Lebesgue series, the series Y. b,/n converges.
n=1
This theorem makes it possible in some cases to establish immediately that the

given series is not a Fourier-Lebesgue series. Thus, for example, the series

© sinnx

2,

=, Inn

is not a Fourier-Lebesgue series, although from Theorem 1 § 30 it converges at every
point. ©
On the other hand, the series ) a,/n can also diverge; in particular, the series

n=1

cosnx

0
2
n=2

for which the series Y a,/n = Y. 1/(nInn) diverges, is nevertheless a Fourier-Lebesgue
series (this was proved in § 30).

Inn °

§ 41. Gibbs’s phenomenon

We have proved in § 39 that for a function of bounded variation the Fourier series
converges at every point, particularly, at points of discontinuity. We want to study
in more detail the behaviour of the partial sums of the series 6 (f) at those points
where f (x) is discontinuous. Let us start with an investigation of a special case and
then transfer to a general case.
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Let f(x) = x in (—z, ) and f(x) have a period 2x. Since f(x) is odd, then its
Fourier series consists of sines only and (see § 8)

20 2 ¢
== f f(x)sinnx dx = = fxsmnx dx.
0 0

Integrating by parts, we find that

14

2 —=xc = 2 1
b, = . il + —fcosnxdx=2(— 1t —
b7 n o NhTm n
0
Thus
sinx sin2x sin3x sinzx
@ ~2 | = e = (- 1yt e

Since £ (x) is of bounded variation, then its Fourier series converges everywhere to
S (x) at its points of continuity and to [f(x + 0) + f(x — 0)]/2 at the points of dis-
continuity of the first kind. Therefore we have for x # + n

sinx  sin2x N sin3x + sinnx
YEAT 2 3 TE T Bk

if x = 4+, then the series converges to 0 (which is evident immediately, as all its
terms then equal zero).

If we make the change in variable x = m — f, then when x passes through the
interval [—z, 7], the variable ¢ will pass through the interval [0, 2x], whence it
follows that

w—t sin{@w-—1) sin2@ —1) sin3(x — 1) + sinn(mw — )
5= | - > 3 —— - + ..
sint sin2¢ sin3¢ sinnt 411
= + 2 + 3 + o + - + -, (41. )

if t # 0 and ¢ # 2;. At these points the series on the right-hand side of (41.1) con-
verges to zero.

We have already said in § 30 that this series will play an important role in many
problems of the theory of trigonometric series. In § 30 it was proved the partial sums
of series (41.1) are all bounded, i.e. there exists a constant C such that

7 sinkx |
=1k

—0<x < + o0,
> n=1,2,....

However, later it will be necessary for us to study in more detail the behaviour of these
partial sums in the neighbourhood of the point x = 0.
We have
X

Sp(x) = i Sir;Ckx = f (élcos kt) fx [D () — ] t,
0

k=1
0
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where, as always, D,(¢) is a Dirichlet kernel. Therefore

S, (x) = fD,,(t) dt — ;
0

But we know that (see (32.3))

1
D,() = S—L + g(¢)sinnt + Ecosnt
where g(¢) is bounded.
Supposing
y {g(t) for 0 <r<x,
() = 0 for x<t<2n,

%(t + 2”) = "px(t)
and using Note 3 of the lemma in § 31, we conclude that

x

3 _ sinnt
Ofb,,(t) dt = f

0

dt + o(1)

uniformly in 0 < x < 27; therefore from (41.2) and (41.3)

X

Sp(x) = —% +f SR it o()
0

or

nx
X

S,(x) = —7+fs—ltn—tdt+o(1).

0
If

T—-x
p(x) = 3 in 0<x<2ax,

p(x + 27) = p(x),

119

(41.2)

(41.3)

(41.4)

41.5)

then the function y(x) has the form given in Fig. 6. We have already seen that the
series (41.1) is o(y) and it converges everywhere to y(x), apart from the points

x = 0 and x = 2x, where it converges to zero.
Allowing x to take the values

7 2
x=;, X=T, chey X =T,
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we see from (41.4) that

S (n) n sintd 1 w
n n + 271 - t t + 0( ),
0
2
s (Zn) T sintd i
)t =) o dr e, (41.6)
0
kn
S (kn) kn _ si J {
"\ n 2n t t+ o(l)

Taking into account what was said in § 35 concerning the behaviour of the curve
y = (sinx)/x, it is immediately seen that the curves y = S,(x) pass through the origin

Fic. 6

of the co-ordinates, fluctuate around the straight line y = p(x) and although for any
x, 0 < x < m, we have
lim §,(x) = p(x),

n-»w

however, from (41.6) it is evident that the curves y = S,(x) to the right of the point
x = 0 concentrate round the interval (0, /) where

sint
l=f dt.
t
0

This type of picture is also obtained on the left of x = 0, since all S,(x) are odd
functions. Therefore, around the point x = O the curves oscillate not between
—x/2 and 7/2, as would be expected, but are concentrated round the interval [— 1, I].
But calculation shows that / = 1-8519 ..., and since zw/2 = 1-57 ..., then the length
of the interval [— I, I] exceeds the length of [—7/2, 7/2].

This circumstance was first noticed by Gibbst!1, which is why it is known as Gibbs’s
phenomenon, and the ratio / to =/2 is Gibbs’s constant; this constant equals 1-17.
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We will show that Gibbs’s phenomenon holds for any function of bounded vari-
ation about its points of discontinuity, as long as they are isolated. Indeed, in a func-
tion of bounded variation the points of discontinuity are only of the first kind.

Let £ (x) be such a function and x, be an isolated point of discontinuity. If f (x, + 0}
— f(xo — 0) = d, then the function

d
() = () — —¥(x — xo)

is continuous in a sufficiently small neighbourhood of the point x,, since
p(xg £ 0) = f(xo £ 0) — (d/m) w(£ 0) and therefore

d
elxo + 0) = 0(xo = 0) = d — —[p(+ 0) — ¢(= 0] = 0.

Since there are no other points of discontinuity for £ (x) in the neighbourhood being
considered, if this neighbourhood were chosen to be sufficiently small, then g(x) is
continuous in this neighbourhood and is of bounded variation in [0, 2x]. This means
that its Fourier series converges uniformly in a sufficiently small neighbourhood of
Xo; therefore the behaviour of the partial sums of the Fourier series for f£(x) around
xo will be just the same as for (d/n) y(x — xo), i.e. as for (d/=) p(x) around x = 0;
therefore, Gibbs’s phenomenon should also occur here.

From Riemann’s principle of localization (see § 33) this is true if f(x)e L[~ =, ]
is of bounded variation in [a, ] and X, is an isolated point of discontinuity of f(x)
in [a, b].

§ 42. Determination of the magnitude of the discontinuity of a function from its
Fourier series

Let us assume that at some point x the function f(x) has a discontinuity of the
first kind, whilst

f(x+0)—f(x —0) =d. 42.1)

The magnitude of this discontinuity can be determined from the following formula
(see Lukdcst1y):

. Su(x)
lim =
nse 1NN

- 2.2
In fact, we have

fx+t)—fx—1t)=d+e(), where ¢(t)>0 as t—-0.

But from formula (31.9) due to the oddness of D, (¢) we have

— 1 . —
5,09 = = = [ /6 + 0~ 76— 1B,
0
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therefore

d [ 1
S,(x) = — p fD,,(t) dt — - fa(t)D,,(t) dt. (42.3)
0 0
We will prove first that
hm — f D,(t)dt = 1. (42.4)
n—» o

Indeed, supposing that » = (n — 1)/2, we have

k13

J‘En(t) Jr = i coskt |™

0

~2(14 3 )
= gt

2v+ 1

_2[(1 11 1 1 1(1 1 1)
= +2+3+"'+2v+2v+1) tyte Tty

® |

1
~ 2 [lnv - 5lnv] = Iny &~ Inn.

(42.5)
Thus, formula (42.4) is proved.
We will prove now that
.1 —
"lg?om fs(t)D,,(t) dt =0, (42.6)
0
For this we will take any # > 0 and choose ¢ such that
le(] <n at 0<r <4,
Then
[ . ] _
[e@D,ydt| < 5 [|Dy(t)|dt < Cylnn 42.7)
0 0
{from (35.18)) where C is a constant. Moreover, since
7
|D,(1)| < <3 d<t<am (42.8)
from (29.11) it follows that

fne(t)ﬁ,,(t) dt = 0(1),
]

and therefore, (42.6) follows from (42.7) and (42.8). From (42.3), (42.4) and (42.6), the
truth of formula (42.2) now follows

COROLLARY 1. At any point of discontinuity of the first kind, the series conjugate to
the Fourier series for f (x) diverges
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Indeed, at this point d
S,(6,f) = — —Inn + ¢, Inn,
where ¢, — 0. T
COROLLARY 2. If f(x) is continuous at the point x, then S,(f, x) = o(lnn); if
S, (x,f) = o(Inn), then the point x cannot be a point of discontinuity of the first kind.
COROLLARY 3. If for the function f(x), the Fourier coefficients are of order o(1/n),
then there can be no points of discontinuity of the first kind in it.
Indeed, then

S.(f,x) =0 (1 + % + e+ %) = o(Inn)

(see Introductory Material, § 11).

From this we conclude in particular that:

If f(x) is of bounded variation and the Fourier coefficients are of order o(1/n), then
it is continuous.

Indeed, in a function f(x) of bounded variation, points of discontinuity can only be
of the first kind; but from Corollary 3 it follows that such points cannot exist and
therefore f(x) is continuous.

However, it must be stated that if f (x) is continuous and of bounded variation, then
its Fourier coefficients are of order o(1/n). We will prove this in Chapter I, § 2.

§ 43, Singularities of Fourier series of continuous functions. Fejér polynomials

We want to show that if no limitations are imposed on the function f(x) except
continuity, then its Fourier series can also diverge at some point and converge non-
uniformly about some point, although it converges everywhere. The first examples
of this kind were given by du Bois-Reymond!!? and Lebesgue, therefore it is custom-
ary to refer to these facts as du Bois-Reymond’s singularity (for the case of divergence)
and Lebesgue’s singularity (for the case of non-uniform convergence).

Here, following Fejérl?1, we will establish some trigonometric polynomials, from
which functions will be constructed possessing either one or other of these singularities.
Subsequently (in Chapter IV) these Fejér polynomials will help in the construction of
considerably more complicated examples, namely: continuous functions, in which the
Fourier series diverges in an everywhere dense set, or in a set of the power of the
continuum and also continuous functions in which the series converges everywhere
but non-uniformly in any interval 4, lying in [— =, #].

Constructional elements. Let us consider two trigonometric polynomials

COsSuXx cos(n + Dx cos(2n — x
O(x, n) = L oostnt Dx L cos@n— Dx
n—1 1
cos(2n + 1 cos(2n + 2 cos3
_ [ @2n }x + 0s(2n )x - nx] ’ @3.1)
1 2 n
— sinnx  sin(n + 1)x sin(2n — Dx
O(x,m) = == 4 SIS SRS
sin(2n + Dx  sin(2n + 2 in3
_ [ ( 1 ) + ( n2 )X ot smnnx] . “3.2)
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Let us note their properties as follows:

(a) There exists a constant C such that

0, )| < C and |Q(x,m)|<C (43.3)
for any x and n.
In fact
0, ) = i cos(2n — k)x — cos(2n + k)x  2sin2nx Z": sinkx ,
& k 1k
00x, ) = Z": sin(2rn — k)x — sin(2n + k)x 2 cosdnx n sinkx .
k=1 k =k

But, as is known (see (30.8)) we have

n sinkx
% ;<M (—o<x< 4+o0,n=12,..).
k=1

Therefore, supposing C = 2 M, we see that property (a) is proved.

(b) If we denote by ¢(x,Q) or p(x, @) any partial sum of the polynomial Q(x) or
Q(x), (i.e. the sum of any number of the first terms in the polynomial), then

le(x, @) <2(1 + Inn)
and — (43.4)
oG, @) < 2(1 + Inn),

because

1 1
1+ -+ -4+ —<1+ Inn.
2 n

(© If § < x <=, then
lp(x, Q)| < M, and |o(x, Q)| < M,, (43.5)

where M is a constant depending only on 4.
Indeed, every sum ¢(x, Q) has either the form

i cos(n + k)x

-1,
2z p— for p<n

or the form
n=1 cos(n + k)x

k=0 n—

cos(2n + k)x

This means that each of the sums in the expression g@(x, Q) has the form
Y &y cos(n + k) x, where the numbers o, are positive, decrease or increase mono-
tonically and do not exceed 1; therefore, using the corollary of Abel’s transfor-
mation (see Introductory Material, § 1), we see that each such sum does not exceed

the constants depending only on §. The same argument holds for ¢(x, O 0), since
there everything is the same except that sines are substituted for cosines.

for p<n.
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(d) Finally, we assume

cosnx cos(n + Dx cos(2n — x
P(x,n) = ¢ ) + o+ ———(—), (43.6)
n n—1 1
— sin sin(n + 1x sin(n— Dx
P(x,m) = n"x + fl_ 1) +o —(~—1—) (43.7)

i.e. P(x, n) is the sum of the first » terms of Q(x, n) and P(x, n) is the sum of the
first » terms of Q(x, n). Then we have

1 1
PO,n) =1+ 5t + -~ > Inn, (43.8)
. 4 . b4
ﬁ(ﬁ ) _ sinn s sin(2n — I)Z’;
an’ ") = n 1
(1 1 1) 1 1 I
> +2+"'+ Sln4>\/?nn,
Therefore,
P (n Inn 439
4n,n) > \/? (43.9)

We will use these facts for establishing the examples required.

§ 44. A continuous function with a Fourier series which converges everywhere but not

uniformly
Let @ > 1 be an integer, which we will select later. Let us suppose that
ne = a** (44.1)
and define
Oi(x) = O(x, ma), (44.2)

where é(x, n) is a trigonometric polynomial, defined by formula (43.2).
Let us assume

o0

1 —
¢ = ¥, 72 0 (44.3)

k=2

and prove if a is chosen suitably that g(x) is a function with the properties given in the

title of this section.
Indeed, from (43.3) for all x and &

10:()| < C, (44.9)
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and therefore series (44.3) converges absolutely and uniformly, which means g(x) is
continuous. Since for any a > 1 and for k > 2 we have

a®’ > 3g%17,
i.e. (see (44.1))
e > 3mq,

then from (44.2) it follows that no term containing sinnx appears simultaneously for
any #n in two different Q, (x), therefore in the series (44.3) all the sines, as in a normal
trigonometric series, are arranged in ascending order of the multiplier # for x.

On the basis of the lemma of § 12, series (44.3) is the Fourier series of g(x), because
its partial sums with indices 3n; converge uniformly to g(x).

We will prove that the partial sums S,(x, g) of the Fourier series for g(x) are all
bounded.

Indeed, each such sum has the form

L 1 —
Sa(x, 8) = k; =3 0i(x) + m+ 1) (X, Qmi1) (44.5)

(in particular cases the second term of the sum (44.5) can disappear). But then on the
basis of (44.2) and (43.3) we have

m o]
<CY <4 (44.6)
k=2

7.2
| &k

where A4 is an absolute constant. Moreover, on the basis of (44.2), (43.2) and (43.4)
we have
{

2(1 + Ina™%) < 2(1 + lna)  (44.7)

< L
T (m+ 1)
and, therefore, from (44.5), (44.6) and (44.7)

|S,(x, )| <B (n=0,1,...; 0 <x <2m), (44.8)

1
m + 17 @(x, Omir) | <

where B is an absolute constant.
We will note in passing (this will be necessary in Chapter IV) that, supposing

S, g) - g(x) = Ry(x, 8),

|R,(x,8)| <K (m=1,2,...; —x <x <7, (44.9)

we have

where K is an absolute constant, which follows from the fact that g(x) isbounded and
from (44.8).

Let us turn to a study of the convergence of series o(g).

We will first remark that for any 6 > 0 in the interval § < x <z (which also
means —xw < x < — ) the Fourier series for g(x) converges uniformly.

Indeed, from formula (44.5) it is evident that

R (xs g) )2 (P(X, Qm+1) Z k2 Qk(x)

1
(m + 1
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and then from (43.3) and (43.5) it follows that

@ 1 M;

N A T

if n and therefore m is sufficiently large.
Thus we see that the Fourier series for g(x) converges for any x = 0(mod 2x). But
for x = 0 (mod2=) it should also converge, since it consists only of sines.
It remains for us to prove that the series o (g) converges non-uniformly near x = 0.
For this purpose we consider its partial sums with indices

v, =2n, — 1.
Every such sum has the form

m=11 — 1 -
Svm(x) = k_z__lk—z Qk(x) + _nle P(xanm),
therefore
1 - © 1 —
RVm(x) = Svm(x) - g(x) = EE-P('X’ nm) - Z k—2 Qk(x)'
Supposing
=
m = an,

we find from (43.3) and (43.9)

1 (= ® 1 1 1 , C Ina
Rvm(xm)>;;5P(m,nm)—C;F>WJ'2——III(I —;1—=\—/_2:‘—C>1,

provided we choose a so that
Ina > \/E 1+ 0).
Thus
R, (x)>1 (m=12,..) (44.10)

for some sequence of points x,, tending to 0, which means that the Fourier series for
g(x) converges non-uniformly near x = 0.
The theorem is proved.

§ 45. Continuous function with a Fourier series divergent at one point (Fejér’s example)

We shall consider Fejér’s polynomials Q(x, n), described in § 43, and by using them
establish the Fourier series of continuous functions divergent at x = 0; in this case,
series will be obtained as desired possessing either bounded or unbounded partial
sums. These and other examples will be used later (in Chapter IV) for constructions
of more complex character.

We assume first as in the preceding section

2
nk=ak,



128 BASIC THEORY OF TRIGONOMETRIC SERIES

where a is an integer and a > 2; let us suppose

Qi (x) = Q(x, ny), (45.1)
and let

© 1
F&) =3 75 Cx(®). (45.2)
k=1

We will again see as in the preceding section that £ (x) is continuous and the series
(45.2), if every term of any polynomial Q,(x) in it is considered separately (but not
grouped in sums), is its Fourier series.

We see, just as in the proof of (44.8), that

[Sa(x, )] < B (45.3)

for any n and x and that the series o (f) converges uniformly in (— 7z < x < — §) and
(0 < x < =), i.e. it converges for any x == 0 (mod 2x). But at x = 0 it diverges,
since supposing that

Vi = 2nm -1, Uy = 3nm-—la
we have

PO, n,) Inn, m?lna
Svm(O) - S,um(o) = m2 2 = m2

=lna>0, m=12,...
m
Consequently, Cauchy’s test of convergence is not fulfilled.

Thus, o(f) diverges at x = 0, although its partial sums are all bounded by virtue
of (45.3).

If instead of n, = a** we supposed

ne=ad" (a>?2),
then we would obtain

PO, n,) m3ina
S,..(0) — S,,.0) = pove) > = mlna,

i.e. the series would not only diverge at the point x = 0, but would have unbounded
partial sums at this point.

§ 46. Divergence at one point (Lebesgue’s example)

The preceding examples of Fejér (see § 45) although suitable for use in further
constructions possess one disadvantage; since the corresponding functions were
established purely analytically with the help of formulae, it is not possible to represent
them by curves and understand geometrically why the divergence of the Fourier
series occurs.

Therefore, we will describe Lebesgue’s example (only slightly modified in order to
shorten the proof), where it is possible to represent the function graphically though
only approximately.

Letn,, ny, ..., 1, ... be a sequence of integers which we shall define later. Let us
suppose

a =1, a.=nn,...n, (k=12,..).
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and define

1k=(—”—, il ) k=12..).

Ay Qg1

We shall later define a sequence of numbers ¢,, whilst now we only assume that

¢ 0.
Let
f(x) = ¢ singex in I,
f(=x) =f().

It is clear that f(x) is defined everywhere in [—u,x], it is continuous in each I,
and reverts to 0 at its end points, i.e. it has no discontinuities at finite points; finally,
f(x) > 0 as x - 0 (Fig. 7) since ¢, | 0, which means that f(x) is continuous every-
where.

We shall prove that its Fourier series converges everywhere in [— 7, ] apart from
x = 0. Since f(x) has only a finite number of maxima and minima in [4, =] it is of

1

FiG. 7

bounded variation in this interval (and also in [— =, — 48]). This means that its Fourier
series converges at each point [— 7, 7], apart from x = 0.

We will show that with a proper choice of the numbers ¢, and n, the series o(f)
diverges at x = 0,

As is known, for any f(x) we have

1 sinnt
S = o [ 16+ 0"t + o),
which means that at x = 0
1 . sinnt
Sn(oaf) = ;; f(t) f dt + 0(1)‘
Our f(x) is even, therefore
2 . sinnt
S,(0,1) = - ff(t) ; dt + o(1). (46.1)
(]
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We will show that by a suitable choice of ¢, and n,, we have

sinat

Ji = ~ff(l‘)
0

dt— oo as k- 0.

(46.2)

If this is so, then S, (0,f) = + ooas k — oo (as is evident from (46.1)) and then the

series o(f) diverges at x = 0.

In order to evaluate J,, we will divide it into three terms

7t/ ay nfak .1
sina sina
Jip = ff() gy ff(t) Lary J‘f(t)gkvd

7t/ age n/ak 1

= Ji + J§ + Ji. (46.3)

We have
! sina,t
i p < ay.
This means that
() < max |f()] ak =mcryy = 0(1), (46.4)

0<r<Cn/ay
since ¢ | 0.

Up to now we have not defined the numbers ¢; and n,. We will now suppose that

n=2,¢ =11Ifcy,c,,..
is defined in I, I,, ...

.» Cx—y and ny, n,,
» Iy, 1.€. in (7/a,_, , 7). It is continuous in this semi-interval

..., Ny, are already defined, then £(¢)

and ¢ > nja,_,, therefore [f(#)]/¢ is bounded. Consequently, if n is sufficiently large,

then

10

— sinnt dt

afak_1

can be made as small as desired (see § 19).
Sincea, = nyn,...ng, thenifn,, .

.., 1,y arealready fixed, n, is still at our disposal,

which means that by increasing it we can make a, as large as desired, in particular

such that

!
|
el <

ff(t)

a1

whence it follows that J;” = o(1) as k — 0.

It remains to estimate J;. We have

nfax -1
. sina,t
Ji = f ¢, sinayt tk dt
ntfay
7Gx .1

sina,t 1

k.1

1 — cos2a,t

_ckf
T2 t

7l ax

i Ci cos2a,t

7/ ax



DIVERGENCE AT ONE POINT (LEBESGUE’S EXAMPLE) 131
But according to the second mean value theorem, taking into account that 1/f is
positive and decreases monotically in the range of integration, we find
/a1 3
cos2a,t a,
-—?—~dt < - cos2a,tdt|<

7/ ax 7/ ax

. 2 1

% 2a, =
Therefore from ¢, — 0 it follows that

1
Ji = 5 Cx Inn, + o(1),
whence from (46.4) and (46.5)
1
Jp = Ecklnnk + o(1).

We can now assume, provided ¢, = 1 / \/ In n,, that ¢, | 0 and

| R
Jk=§—\/lnnk+o(1) as k— 0.

Thus, the proof is concluded.

From Fig. 7 it is evident that the function f(x), as x approaches zero, performs
more and more frequent oscillations; thus, it is found graphically that the divergence
of the series o (f) at x = 0 is produced by the fact that £ (x) is of unbounded variation
in the neighbourhood of this point.

Note. Later (in Chapter V, § 22) we will need the example of a continuous func-
tion, for which the Fourier series converges to zero everywhere in [0, 27] external
to some interval [a, b], converges at every point of (a, b) and diverges either only at a
or only at b or at both end points of the interval (g, b), and possesses unbounded
partial sums at points of divergence (we say briefly: it diverges without bound). All
such examples are easily obtained, following the method of establishing Lebesgue’s
example.

Indeed, if we suppose

0 in [—w=,0],

POY=170 in [l

then

1
Sn(O’ (,D) = _2_ Sn(()’f):

and therefore o(p) diverges without bound at x = 0; moreover, o(p) converges in
0 < x < & and converges to zero in (—a, 0), which follows from the principle of
localization (see § 33). If we suppose

PalX) = ¢x — a),

then we obtain a function for which o(p,) diverges at x = a, converges to zero in
[a — =, a] and converges in (a, a + =].
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The function ¥ (x) = ¢(— x) has a Fourier series which converges everywhere
except at x = 0, where it diverges without bound, and moreover this series converges
tozeroat 0 < x <.

Therefore
Y,(x) =¥(x — b
has a series which converges everywhere except at x = b, where it diverges without
bound, whilst it converges to zero in (b, b + @).

Now let 0 < @ < b < 2x. Let us construct A(x) in the following way. We choose
the points « and y such that 0 < « < @ < y < b and let

I in (a7),

A =
*) 0 outside («,b),

A(x) is interpolated linearly by («, a) and (y, b) (Fig. 8).

According to Steinhaus’ theorem (§ 34) the series o(4¢,) is equiconvergent with
A(x)o(p,) and therefore it converges everywhere, apart from x = a, where it diverges
without bound, whilst outside [a, b) it converges everywhere to zero (either because
A(x) = 0 or because g,(x) = 0).

A
| ———y

L

FiG. 8

In just the same way, if we denote by A*(x) a function which is equalto 1in (y, b),
to 0 outside (a, f) and can be interpolated linearly in (a, y) and (b, f), where

O<a<y<b<f<2nm,

then we see that o(A*¥,) is equiconvergent with 1*(x)o(¥,(x)) and therefore it
diverges without bound at x = b, converges everywhere apart from x = b and con-
verges to zero outside (a, b].

Finally, supposing FO) = Ag,(0) + 2*W,(9),
we see that F(x) is continuous and o (f) diverges without bound at x = gand x = b,
but converges at all the other points, and moreover converges to zero everywhere
outside [a, b].

Note. The Fourier coefficients for those series which we established in §§ 45 and 46
tend to zero according to a rather complicated law. In connection with the solution
of some problems in the theory of integral equations, the question arose: is it possible
to find some continuous even function f(x) for which

o(f) = Y a,cosnx, where |a,|]0

n=1
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and moreover o(f) diverges at x = 0? Salem* gave an affirmative answer to this
question. We will not give the proof here, since it is based on the study of some
theoretical numerical inequalities, which would digress too far from the subject matter
of this book.

§ 47. Summation of a Fourier series by Fejér’s method

We have seen that even Fourier series of continuous functions have points of
divergence (§§ 45 and 46). The question arises as to what extent the Fourier series
can then be used for calculating the values of the function £ (x)? Here, as is always the
case with divergent series, it is natural to resort to one or other method of summation.

Let us recall (see Introductory Material, § 6) that the functional series is said to
be summable by the method (C, 1), if there exists a limit

lim 0,(x),

n-yo

where
1 n
0n(x) = ] ]Z,Osk(x), (47.1)

and S,(x) are the partial sums of the series.

The application of this method to Fourier series is usually known as summation
by Fejér’s method, since Fejér first drew attention to the usefulness of Cesaro sums
in this case and proved the fundamental theorem. Later it was generalized by Lebesgue.

We know (see (31.3)) that the partial sum S,(x) of the Fourier series of the func-
tion f(x) is expressed by the formula

1 T
5:6) = - [ 10D - Dy,

where D,(u) is a Dirichlet kernel. Therefore a Cesaro sum, defined by (47.1), should
have the form

17 1 = 17
o,(x) = ~ ff(t) ——" kZ=ODk(t —x)dt = ~ ff(t)K,,(t - x)dt, (47.2)
where - -
1 n
K,,(u) = m kZo D,,(u). (473)
Consequently -
g,(x) = % ff(x + w) K, (1) du. 47.4)

The function K,(u) is known as a Fejér kernel; we will now find an appropriate
expression for it.



134 BASIC THEORY OF TRIGONOMETRIC SERIES

Since 1
sin (n + —) u
2 cosnu —cos(n + Du
D, = - ( + Du,
2 sin hd 4sin2£
2 2
then
1 n cosku — cos(k + Du 1 —cos(n+ Du
K@) = —— 3" (+ D _ (4D
nt i 45in? — (n + 1)4sin2—1i
2 " 2
: u
1 sin(n + )5
2(n + 1) Lou
sin -
Thus
u
1 sin(m + 1) 0}
K () 200+ 1) ” (47.5)
2

From this expression we immediately derive a number of properties of the kernel.
() K,(w) > 0.
This property will play an essential role later.

(2) We have
1 n?
L < 7 S .
K, (v T < 200 + a2 for 0 < |u| <m, (47.6)
2(n + 1)sin? 5
and therefore
1
K,(u) =0 (W) for O0<|u|l <= “471.7)
and
n2
< 55 < < 7z, .
K,(w) 20+ )5 for 0<d <lul<n (47.8)
whence for any ¢ > 0, supposing
M,(0) = max K,(u),
S<Cu<Cn
we have
lim M,() = 0. (47.9)
n—-aw
(3) We have

%fK,,(u) du =1, (47.10)
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This follows from (47.3) and from

1
~ f D@du=1 (k=0,1,2,...).

—T

@) If 6 > 0, then

[
lim 1 f K,(wydu = 1. (47.11)
nsyo T

-3
This immediately follows from (47.9) and (47.10).

Starting from these properties, we can prove the following theorem, concerning the
summation of Fourier series by Fejér’s method.

FEJER’s THEOREM. If x is a point of continuity of the function f(x) or a point of dis-
continuity of the first kind, then at this point o(f) is summable by Fejér's method to
f(x)orto[f(x+ 0)+ f(x — 0)]/2, respectively; if (a, b) is an interval where f(x) is
continuous, then o (f) is uniformly summable by Fejer’s method to f (x) in any interval
[«, B] lying within the interval (a, b).

Finally, if f (x) is everywhere continuous, then its Fourier series is uniformly summable
by Fejér's method in [ —m, 7], i.e. 0,(x) uniformly converges to f (x) in this interval.

In order to prove this theorem we will turn to a lemma which is also useful in
other circumstances.

LEMMA. Let

Sa(x) = % ff(x + )¥,(1) dt, (47.12)

where the function W, (t) possesses the following properties:
(1) W, (¢) is an even function.

@) ¥ (1)) dt <C(n=1,2,...) where C is a constant.

(3) Supposing for 6 > 0
Mn(a) = S§sup IWn(t)la

<t <n
we have
lim M,(d) = 0;

n-» o

(4)%f¥’n(t)dt =1,

Then: if x is a point of discontinuity of the first kind for f (x), then

S+ +/(x—0)
2

J{(x) = f(x) at each point of continuity of f (x).

Jax) —

as n— o,
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If f(x) is continuous in (a, b), then f,(x)— f(x) uniformly in (z,B) for any
[% B] = (a, b).

To prove this lemma we will note first that from property (4) of the function ¥,(z)
we have

v, ()dt

fE+0+fx=0 1 [fGE+0)+fx-0)
2 _nf 2

= ?zl“ f [f(x +0) +f(x — 1P, (1)dt  (47.13)
0

because of the evenness of ¥, (¢). From (47.12) and the evenness of ¥,(¢) we conclude
that

Si(x) = %f [f(x + 1)+ f(x — 0)]W,(r) dt. (47.14)

Therefore from (47.13) and (47.14)

0 -0
PRI

= —l fx+)+flx—0)—f(x+0) —f(x— 0]V, ()d:. (47.15)
Tt
0

We will show that the integral on the right-hand side of (47.15) tends to zero as

n — oo and moreover if f(x) is continuous in (g, b), then it tends to zero uniformly

in [z, B], where @ < « < 8 < b. For this purpose we will choose a number é such
that

If&x+0—-f(x+0) <e,

fx—)—-f(x-0)]<e

This is possible for any fixed x; if f(x) is continuous in (g, b) (in this case f(x + 0)
= f(x — 0) = f(x)), then it is possible to choose é so that it is independent of x,
o < x < P and the inequalities (47.16) hold. Having chosen § in this way, we divide
the integral of formula (47.15) into two: integral 7, in the interval (0, 0) and integral I,
in the interval (4, ). We have on the basis of (47.16)

at 0 <x <9. (47.16)

| < 2e | |¥,(t)]dt < 2eC
V]

from property (2) of the function ¥,(¥).
For I, we find

LI < M,@) [ {|fCx+ Dl +1f(x + O] +[f(x — D] + | f(x — O)[}dz. (47.17)
']
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For constant x the integral in (47.17) is finite and the factor in front of it tends to zero
because of property (3) of the function ¥,(¢), which means that I, — 0. Moreover,
if x € [«, B] = (a, b), then the integral in (47.17) for any x does not exceed

[1f @] dt + 27| £ ()],

and since f(x) is continuous in (g, b) and is therefore bounded in [«, ], then I, — 0
uniformly. The lemma is completely proved.

In order to derive Fejér’s theorem formulated above from the above lemma, it is
sufficient to prove that the Fejér kernel satisfies the properties given in the lemma;
then, supposing f,(x) = ¢,(x), we arrive at the required result.

But property (1) for a Fejér kernel has been fulfilled; (3) and (4) have already been
proved by us and (2) follows from the fact that for a Fejér kernel

f |K,()) dt = an,,(t) dt=n

since K,(t) > 0 and from property (3). Thus Fejér’s theorem is completely proved.

§ 48. Corollaries of Fejér’s theorem

From Fejér’s theorem, it is possible to deduce a number of interesting corollaries.
First, it gives a new proof of Weierstrass’s classic theorem on the approximation of
a continuous function by means of a trigonometric polynomial (see § 27).

Indeed, since we have proved that for a continuous f(x) the function o,(x) tends
uniformly to f(x), then having chosen » sufficiently large, it can be stated that

If(x) —o,(x)] <&, —oo<x< + 0.

But 0,,(x) is evidently a trigonometric polynomial and therefore the theorem is proved.

We will also note that method (C, 1) is regular (see Introductory Material, § 6) i.e.
the convergence of a series to a value S implies its summability by method (C, 1) to
the same value S. From this, it immediately follows that:

If o(f) converges at a point of continuity of the function f(x), then it converges to
f(x); similarly, at a point of discontinuity of the first kind, if o(f) converges, then it
certainly tends to [f(x + 0) + f (x — 0)}/2.

Finally, Fejér sums make it possible in some cases to pass judgment on the normal
partial sums of the Fourier series. Thus, for example, it is possible to prove the
theorem:

For the function f (x) of bounded variation, the partial sums of the series 6(f) are all
bounded.

In order to prove this, we will note first that if
m<f)<M, —a<x<n, (48.1)
then for Fejér sums we also have

m<o,x) <M, —n<x<mn. (48.2)
6 Baryl
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Indeed, taking into account that the Fejér kernel is positive, we immediately derive
from (47.4) and (48.1) that

17 1
m-— fK,,(t) dt <oy(x) < M— fK,,(t) dr,

and then formula (47.10) immediately shows the truth of our statement.
Having noted this, we will now compare ¢,(x) and S,(x). We have (see Introductory
Material, § 6)

S(x) — 0a(x) =

" k;k(ak coskx + b, sinkx). (48.3)

Hence it follows that

1 n
[Sn(x) — 0,(x)| < 7*_!_—1—k;k(!akl + 1B l).
But if f(x) is of bounded variation, then as we know (§ 22)

V
lap]l <= and [b] <

K K’

where V is the complete variation of f(x); therefore

[Sa(x) — 0,(x)| <2V,
whence
2V — M < §,(x) <2V + M. (48.4)

Formula (48.4) not only proves that the partial sums of the Fourier series for func-
tions of bounded variation are all bounded, but it also gives the bounds within which
they are contained in terms of the bounds of this function and its complete variation.

Note. We have seen (see (48.1) and (48.2)) that if £ (x) is contained between m and M
in an interval of length 2z, then 6,,(x) (n == 1, 2, ...) are also contained in this interval
between m and M. Later we will find it useful to estimate o,(x), knowing only the
bounds of f(x) in some interval [a, b]. We will prove that:

If

m<fX)<M in a<x<b,
then for any 6 > 0, N, (dependent on 0) is found such that
m—0<o,x) XM+ at n >Ny, a+d<x<b—-205. (48.5)
Indeed, from (47.4) we find that

—d ]
Ou(x) = % ff(x + WK, (u) du + -71; ff(x + u) K,(u) du

1 T
+ ;ff(x +wK,Wdu =1+ I/ + 1. (48.6)
é
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From (47.7), it follows that

IL=0 (,11—) flf(x +w)|du=0 (—i—) fnlf(u)l du=o()  (48.7)

and a similar result holds for 1.
To estimate I7 we note that if a + 6 <x <b — d and |u| <4, then x + u
€ {a, b] and then

S ]
1 1
m— f K,@wdu<l < M; f K,(v)du.
-0 —d
But we know from (47.11) that

n>w 7T

8
1
lim — JK,,(u) du=1.
-8

This means that it is possible to choose Ny (dependent on d) so large that, for example,
we have

9 é
m— ——<I<M+—, n>=N,,
3 3
and moreover (see (48.7))
] 0
|5 < and || <

3 3

whence we see from (48.6) that (48.5) is proved.

§ 49. Fejér-Lebesgue theorem

Fejér’s theorem, proved in § 47, makes it possible to judge the summability of the
series o(f) only at those points where f(x) is either continuous or possesses a dis-
continuity of the first kind. However, an arbitrary summable function cannot possess
a point of the given type. Lebesgue generalized Fejér’s result and proved the following
theorem.

FEJER-LEBESGUE THEOREM. For any summable function f(x), the series o(f) is sum-
mable almost everywhere by Fejér’s method to f(x).

To prove this theorem, let us assume

pO) =f(x + 1) +f(x—1) -2/ (%) “9.1)

and ¢
D.(1) = J (e ()| du. (49.2)

We will prove that the series o (f) is summable by Fejér’s method to f(x) at any point x
where

D,.(1) = o(2). (49.3)
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For this we note (see § 47) that

1 J
0~ F0) = - [ 4 0470 = 0 = 27 0 dr
0

1 24
= ;j(px(t)K,,(t) dt (49.4)
0

and we will prove that when (49.3) is fulfilled the integral on the right-hand side of
(49.4) tends to zero. For this purpose we note that

. |K, (D] <2n (n=1), (49.5)
since
|1D,(D] <k + L <2n forany k <mn,
and
K@) =——3
Therefore )

1/n 1/n

1 2 2 1
| eoroa) <2 [1pola= 2o (D) =an @
0 0

due to (49.3).
Also, because of (47.6)

P 1

1
- [rorwa

1/n

; d
<5 s @.7)

1/n

For the integral on the right-hand side of (49.7) we will carry out integration by parts;
we obtain, again operating on (49.3) (see Introductory Material, § 11)

—lﬁmm@=%-3@—fia+}”kaa

2n t 7 (1)2 2n
1/n b 1/n
n
1 (ar
i/n

From (49.6) and (49.8), it follows because of (49.4) that

0a(x) — f(x) = o(1)
at every point, where (49.3) is fulfilled.



ESTIMATE OF FOURIER PARTIAL SUMS 141

It remains for us to prove that the condition (49.3) holds almost everywhere. But
in § 15 of the Introductory Material it was remarked that this relationship is fulfilled
at any Lebesgue point and consequently almost everywhere.

The Fejér-Lebesgue theorem is proved.

As a corollary, we obtain the following important theorem.

If 6(f) converges in some set E, mE > 0, then its sum equals f (x) almost every-
where in E.

Indeed, we know that method (C, 1) is regular. Therefore at the point where o(f)
possesses a certain sum S, it should be summable to this value S by Fejér’s method.
But since by Fejér’s method it is summable to f(x) almost everywhere, then the set
of points of E, where the sum of the series o (f) differs from f(x), is of measure zero.

Note. We have seen that the series o(f) is summable by Fejér’s method at any
Lebesgue point. It is known that a these points f(x) is the derivative of its indefinite
integral. The question can be raised whether the series o(f) is summable by Fejér’s
method at a point, where the latter condition is fulfilled. Lebesgue'™? proved that this
should not, however, occur, though here we have summability (C, 2).

§ 50. Estimate of the partial sums of a Fourier series

In § 49 we have proved that at the points where the following condition is fulfilled,

h
D, (h) = { If(x + u) + f(x — u) — 2f(x)| du = o(h), (50.1)

the series o(f) is summable by Fejér’s method. It was also remarked that condition
(50.1) is fulfilled almost everywhere. Now we want to estimate the increase of the
partial sums S,(x) at these points.

We will prove that at any point x, where (50.1) is fulfilled, we have

S,(x) = o(Inn). (50.2)

Consequently, estimate (50.2) also holds almost everywhere.
We have seen (see (37.9)) that

sinnu
u

[
1
Su(x) — f(x) = ;f UG+ w) + fx — w) — 2f(x)] du +o(1), (50.3)
0

where o(1) tends to zero and 4 is any positive given number. Supposing
o) = f(x +uw + f(x — w) — 2f(x), we have

f|¢(x)l

sin sin nu

sinnu
du
u

u u

1/n d
du =f lp@)] 2% gy 4 flqo(u)l
0 1/n

1/n S

1
<nf lp(w)] du + f|(p(u)] —du, (50.4)
(4] 1/n
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Then from (50.1)
h
D.(h) = [ lp@)| du, (50.5)
0

therefore (for brevity’s sake, we will dispense with the index x)

i/n

f lp@)| du = @ (;11—) =0 (%) (50.6)
0

d (D
fi o1 2 _ 20 F

From (50.4), (50.6) and (50.7) it follows that

fl(p(u)l e (1) + 2O (1) fcﬁ(x) N
J 1t

and

+ f LAV (50.7)

1/n

1/n

0 t?

1n

= 0(l) + f %L)dt. (50.8)

If for a given ¢ > 0 we choose d so that @(¢) < e¢for 0 < ¢t < §, which is possible
from (50.1), then

s 8
Dt dt
f t(z) dt <e¢ fT = ¢ lnnd = o(lnn), (50.9)
1/n 1/n

because ¢ is as small as desired. But o(1) is also o(ln n), therefore from (50.3), (50.8)
and (50.9) we find that
[Sa(x) — f(x)] = o(Inn).

But since x is fixed, then f(x) is constant, i.e. [ f(x)| = o(In n) and finally
S,(x) = o(lnn),

which is what was required to be proved.
Note. In § 36 it was proved that for a bounded function, which also means a con-
tinuous function, we have for all xand n > 1

1S(x)] <K CMInn (n=2,3,...),

if | f(x)| < M (Cisan absolute constant). If f(x) is continuous, then condition (50.1)
is fulfilled and even uniformly; therefore, for continuous functions the estimate made
earlier is replaced by a stronger one: O(Inn) is replaced by o(ln#n).
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§ 51. Convergence factors

It is usually said that the numbers {u,} are convergence factors for some series

Uo(x) + ug(x) + -+ + uy(x) + -

in the interval [a, b], if the series
Zu,, (x) un

converges almost everywhere in [a, b].
The results of §§ 49 and 50 allow us to prove that it is possible to choose as conver-
gence factors for a Fourier series in [—, 7] the numbers

1
,u,,=1n—n', n=2,3,..
(40 and gy can be chosen as desired); i.e. we have
THEOREM. If a, and by are Fourier coefficients (k = 1, 2, ...) then the series

® agcoskx + bysinkx
kgz Ink

converges almost everywhere in [ — m, 7).

To prove this we note that in § 50 it was proved that S,(x) = o(Inn) almost every-
where. Therefore because the sequence u, is convex (the definition and properties of
convex sequences are given in § 3 of Introductory Material), then it remains to apply
Theorem 6 (see Appendix, § 12), assuming that u,(x) = a,cosnx + b, sinnx.

§ 52. Comparison of Dirichlet and Fejér kernels

We know (see §§ 45 and 46) that continuous functions exist in which the Fourier
series diverges at some point. On the other hand, for any continuous function f(x),
the series o(f) is summable to f(x) at any point (see § 47).

We want to explain why such a phenomenon occurs and for this purpose we will
compare the Dirichlet and Fejér kernels. As is known

Sa(x) = % ff(t) D,(t — x)dt (52.1)
and o
o,(x) = ;lz— ff(t) K, (t — x)dt, (52.2)

where D,(u) is a Dirichlet kernel and K, (x) is a Fejér kernel.
If at the point x,, the series o(f) converges to f(x), then this means that
Sa(x0) — f(xo); if it is summable by Fejér’s method to £ (x), then o,(xo) — f(xo).
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It is natural, therefore, to pose the question thus: let f(x) be continuous and

L) = [fO @t — %) dt, (52.3)

where @,(u) is some function which we will also refer to as a kernel; we ask ourselves —
what properties of this kernel influence the equality

11Iﬂﬁ.(>€) =)

or the existence of points x, where f,(x,) does not tend to f(x,) or in general does
not tend to any limit?

Before answering this question we will show that the problem of convergence of a
Fourier series with respect to an arbitrary orthogonal system leads to another question
of the same type and we will therefore solve both problems together.

Let {g,(x)} be some orthonomal system in (@, b). In order to study the convergence
of a Fourier series for some function f(x) with respect to this system, we will consider
the partial sum of this series, i.e.

S0 = ¥ agu(),
k=0

in other words,

n b b n
5.0 = 3 9@ | SOn@dt = [10] 5 ar0p] ar
Supposing ’

Pu(t, %) = 3 POy,

we name the function @,(¢, x) the kernel of the system {g,(x)}. We have

b
S.(x) = [ fOP,(t, x) dt. (52.4)

Lebesgue was the first to pay attention to the importance of investigating the be-
haviour of functions of the type

b
0.(x) = [ 1D,(t, x)| dt. (52.5)

which are now usually called “Lebesgue functions” for the given system. The role of
these functions in the problem of the convergence of a Fourier series becomes
extremely clear, when the theorem is proved (see Lebesguet?7),

THEOREM. If for some point x, the sequence p,(x,) (n = 1, 2, ...) is unbounded, then
there exists a continuous function f(x) for which the Fourier series with respect to the
system {@,(x)} diverges without bound at the point x,.

This theorem can be proved immediately, if we first establish the validity of the
following more general assertion:

LeMMA. Let

b
L) = [ fOD., x) dt, (52.6)
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where @, (t, x) for every fixed x is summable with respect to the variable t and f (1) is
bounded. Then, if L
lim g,(x0) = + o0, (52.7)

n—»ow

a continuous function f(x) is found for which

1im | £, (%0, f)| = + 0. (52.8)

n-»oo

Indeed, first, supposing that for a given n

g(t) = Sign@n(t9 x0)>
we have

b b
Ja(x0, 8) = fg(t)an(ts Xo) dt = f |Da(t, x0)| dt = Qn(xo)' (52.9)

This means that for any » there exists a function g(z) such that |g(#)| < 1 and for it
Ja(x0, 8) = @a(x0)- (52.10)

If this were the same function g(¢) for all » and if it were continuous, the theorem
would be proved, because from (52.7) we would have

1im | f,(xo, &) = + c0.

n—ow

Therefore, we will first replace g(¢) by a continuous function g*(¢), for which £, (x,, g%)
is “large™ and then we will transfer various functions for various # to a single function.
We will first choose for a given n a continuous g*(f) such that for £, (x, g*) we have

Ju(x0, 8%) = 3 nlx0)- (52.11)
For this it is sufficient to take & such that

[ 12,6511 < e, (s212)
E

if mE < &, which is possible, since for fixed # and x, the function under the integral
sign is a summable function of ¢, and therefore its integral is as small as desired, if
the set over which the integration occurs is of sufficiently small measure. Because of
the C-property we can find a continuous function g*(¢) coinciding with g(¢) in the
perfect set P, mP > (b — a) — ¢, such that jg*(¢)] < 1. Then for this function
from (52.6)

b
filxo, 8%) = | g* (D, (¢, xo) dt.
From (52.12) it follows that
| /2 (xo0, 8*) — fu(X0, 8)] = |Cf [g* () — g(O1Du(t, xo) dt|
P

<2 [ 186 )1 dr < 2 ) (52.13)

[oF 4
which means that (52.11) follows from (52.9) and (52.13).
6a BaryI
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For all n we will denote by g,(¢) the function which possesses the properties:

(a) g,(2) is continuous

®) 1g.(0] <1

(C)fn(xo H gn) > % Qn(xo)'

We have already seen that it is possible to establish such a function for all #n. Now
let ¢, be a sequence of numbers such that

© 0 1
&y > 0,";18,, < + oo,k;n:Hsk < g e (52.19)

(for example, it is possible to take ¢, = 1/7%), let n, be an increasing sequence of
integers which we will select later. Then, supposing

Fx) =k§£kgnk(x), (52.15)

we see that f(x) is continuous, since g,(x) are continuous and all |g,(x)] <1 and
> &, < + oo, which means that the series (52.15) converges uniformly. It is clear that

b 5 © b
Fibeosf) = | 3 exen () ult, o) dt = 3. ek [ u(Pult, Xo0) dt

o«

= Z gkf;t(XOs gnk)'

Here the term-by-term integration is valid because of the uniform convergence of the
series (52.15).
We will now show that for a suitable choice of the numbers #, we will have

lim|f,(x0, )| = + 0. (52.8)

n->o0

If for even one of the functions g,,(x) we had

lim | £, (x0, gm)| = + 00,

n—»w

then the theorem would be proved. We will assume that this is not the case. Let us
define

im | £,(x0, &) = VP m- (52.16)

n-»o©

We will choose by induction the numbers #; such that

€40n, (X0) = © (52.17)
and

k—1 1
Zlep?n,, < 15 &eln(%0)- (52.18)
e
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This is possible, since {g,(x,)} is unbounded due to (52.7), which means that the num-
bers n, can be chosen such that g, (x,) — oo sufficiently quickly for conditions (52.17)
and (52.18) to be fulfilled. Since

1

k—
f;l (xOs Z 8pgnp)
p=1

as n— oo due to (52.16), it is possible to choose n, so large that

k—1 { k—1
2 gp.f;l(xo H gnp) <2 lepynp
p=

p=1

k-1 k-1 1
.f;lk (x09 Z Eygn,,) l < 2 Z Spynp < E Sank(xO) (52-19)
p=1 | p=1
because of (52.18).

On the other hand

® 1
< Y £0m(%0) < ¢ Exln (o), (52.20)

p=k-+1

S (xo, i Spgnp)

p=k+1

because |g,,(x)| < 1 which means that

b b
[ &, (1) Pui(t, X0) dt | < [ 1D, (8, x0)| dt = @4, (x0)

and moreover, we have (52.14).
Hence because of property (c) of the function g,(x), (52.19) and (52.20)

I.f;lk(xO’f) l >f;lk(x0, skgnk) -

p=

k—1
f;tk (xO: Zl Spgnp) ’ -

S (xo’ i Epgnk)

k+1

1 1 1 1
= ) &x0n, (Xo0) — Estnk(xo) - ‘6—8k0nk(xo) = s k0, (X0),

and this tends to + oo as k — oo due to (52.17). This means that (52.8) is valid and the
theorem is proved.}

The validity of Lebesgue’s theorem formulated above follows quickly from this.
Indeed, if in the proved lemma the role played by @,(¢, x) is the kernel of the given
orthogonal system, then f,(¢,f) is converted into the partial sum of the Fourier
series of f(x) with respect to this system (due to (52.4) and (52.3)) and therefore, if
at some point (52.7) is fulfilled, then a continuous f(x) is found with a Fourier series
which diverges at this point. Thus, Lebesgue’s theorem is proved.

Let us now consider specially the case of a trigonometric system. If it is normalized,
i.e. if the following system is taken

1 COSX sinx cosnx sinmx

\/‘2‘;! \/; 2 \/; PR \/; H \/; 9 e

t Since on multiplying f (#) by some constant f,(x, f) is multiplied by the same constant by virtue
of (52.6), it is always possible to find f (x) to satisfy the conditions of the lemma and such that
|f (t)| < 1. This note is not necessary for Lebesgue’s theorem but will be useful later in Chapter IV.
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then the role of its kernel is played by the function

1 n coskxcoskt + sinkxsinkt
D,(t,x) = py +k21 -
1 1z 1
=5+ ;kglcosk(t —x) = ;D,,(t - x),

and therefore the Lebesgue functions (see (52.5)) have the form

1 Tt
0t =~ [ 10,6 = 91

But because of the periodicity of D, (1) we have

1 F2A
0t = [ 1.1 a,

1.e. the Lebesgue functions do not depend on x and are converted into the Lebesgue
constants L, considered earlier (see § 35). But we know that lim L, = + oo (because

n->w

L, ~ (4/7?) Inn) and therefore we now see that the existence of continuous functions
with Fourier series, divergent at some point, is explained by the fact that the Lebesgue
constants increase without bound with increase in n. We also note that since

Qn(x) =L,

for any x, then it is possible for any point x to find a continuous f(x) with a Fourier
series divergent at this point.

Now we will return to the question of the summability of a Fourier series by
Fejér’s method. Comparing formulae (52.5) and (52.2), we see that if for

1 k4
0® = [ 1K~ 91 di

(52.7) were fulfilled for even one value of x,, then it would be possible to find a con-
tinuous f (x) for which o,(x, f) would not tend to any finite limit as n —» oo, i.e. o(f)
would be unsummable by Fejér’s method at this point. But due to K,(u) being
periodic and positive, we have

1 T
0wt = [ K@,

and then due to property (3) of Fejér kernels (see § 47)
(%) =1

for all # and x. Thus, for a Fejér kernel the fulfilment of (52.7) at no point whatever
is impossible.
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In § 2 of Chapter VII we will see why Fejér’s method is applicable almost every-
where (Fejér-Lebesgue theorem, § 49) whilst everywhere divergent Fourier series exist
(Chapter V, § 20) —this s also the result of the different behaviour of Fejér and Dirich-
let kernels.

/

n+
v ( Vil

<

-{r/\/\[\ NA nx s _AQQLJAMA‘

-’VUUOUV\J“ - 0 I

To conclude this section, we think it appropriate to represent Dirichlet and Fejér
kernels geometrically (see Figs. 9 and 10).

§ 53. Summation of Fourier series by the Abel-Poisson method

We will refer here to yet another classic and very important method of summation
of Fourier series. For this we recall (see Introductory Material, § 7) that the series

Y u,(x) is said to be summable by Abel’s method at a point x, to the value S, if for
n=0

[
any r, 0 <r < 1, the series Y. u,(xo)r" converges and supposing
n=0

S(xo,7) = Zoun(xo)"",
we have
lims(xo, r) = S.

r->1

Poisson applied this method of summation to Fourier series, therefore the given
method when it is applied to trigonometric series is usually referred to as Poisson’s
method or the Abel-Poisson method.

Since we know (see Introductory Material, § 7) that Abel’s method is stronger than
the method (C, 1), then the following theorem immediately results from Fejér’s
theorem and the Fejér-Lebesgue theorem (see §§ 47 and 49):
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THEOREM. For any summable f (x) the series o (f) is summable almost everywhere by
the Abel-Poisson method to this functionf (x); it is summable to [ f(x + 0) + f(x — 0)]
at any point of discontinuity of the first kind and to f(x) at any point of continuity.

Tt can be seen that apart from these theorems little more need be said concerning
the summation of Fourier series by Poisson’s method; however, we will see in § 55
and § 56 that it is possible to obtain very much deeper results. We will first derive
some auxiliary formulae which will be necessary for us there.

For any trigonometric series

Qo

- + Z (a, cosnx + b, sinnx) (53.D

“Poisson sums” are the names given to the functions

flr,x)y=— + Z (a, cosnx + b, sinnx)r", (53.2)
n=1

when the series on the right-hand side of (53.2) converges. In the case when the series
(53.1) is a Fourier series for some function f(x), these functions can be expressed in
terms of f(x) in the integral form, in the same way as was done for the partial sums
and Fejér sums of a Fourier series. We will find this in the next section. Also in § 57
we will use the results obtained to solve an important problem, called Dirichlet’s
problem.

§ 54. Poisson kernel and Poisson integral

We will first find a suitable expression for f(r, x) if (53.1) is o (f). We have

1 - 1 X
= ff(t)cosnt dt, b, = - ff(t) sinnt dt,

and therefore

flr,x) = = f f@ydt + — f £(t) cosn(t — x) dt.

But since 0 <r < 1, then the series Z r" cosn(t — x) for a given r converges uni-

n=1

formly with respect to ¢ and therefore according to Lebesgue’s theorem (Introductory
Material, § 14) it is possible to integrate it term-by-term even after multiplying by
J(x); therefore

flr,x) = ff(t) [ + Z r" cosn(t — x)] dt. (54.1)

Let us now find a simpler expression for the series given in the square brackets
in (54.1). Let

o0

P(r,) = Z cos na.
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We consider the auxiliary series 1 °
—_ n
5 +n2 z

=1

and suppose that z = r(cosa + isina). If |z| = r < 1, then this series converges and

1 z 14z 1 — r? + 2irsina
5+1—-z_2(1—z)—2[1——2rcosae+r2]'

1 0
? +n;12 =
But, on the other hand
1 ® 1 = .
= + Y 2" = - r"(cosna + isinna).
2 n=1 2n=1

Therefore, separating the real and purely imaginary parts, we find

1 & 1—r2
2 +n;1r COSME = 21 — 2r cosx + 7]

and
rsina
1 — 2rcosa + r?’

oc
> rsinna =
n=1

Thus we have established that

1-r2
PU®) = S 2rcosa + 71 (54.2)
This expression is known as a Poisson kernel and the expression
_ rsina 543
Q(r’a)_l—Zrcoscx+r2 (54.3)

as the kernel conjugate to it.

Later, the fact that the Poisson kernel at 0 < r < 1 is a positive value (as is also
the Fejér kernel) will be very important. In fact, since

@
1—-r2>0 and 1—2rcosoc+r2=(1—r)2+4rsin25>0,

then P(r,e) >0 at 0 <r < 1.
Let us return to formula (54.1). We have

1—-1r2

—2rcos(t — x) +r?

1 17
£ %)== f FOPC, 1~ dt = o f £ dt. (54.4)

The integral on the right-hand side of (54.4) is known as a Poisson integral.

It is very important to understand the meaning of a Poisson kernel geometrically
(see Fig. 11). For this purpose we will take a plane circle with centre at the origin and
unit radius; if a radius is drawn through the point M with polar co-ordinates (r, )
and the perpendicular is drawn to it, then denoting by Q one of its points of inter-
section with the circumference, we find

MQ? =1 — r2,
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If P is a point with polar co-ordinates (1, ), then

MP? =1 —2rcos(w — t) + r?,

1 -2 _(MQY
1 —2rcos(w—1)+r: \MP/’

Thus, we again see that the Poisson kernel is a positive magnitude, and the Poisson
integral can be written in the form

1 f MO \?
e =5 | f(t)(M:f,) dr.

and therefore

Fia. 11

Theorem § 53 could be expressed thus: if the point M(r, w) tends to the point
P(1, w), i.e. to the point on the circumference lying on the same radius, then for almost
all values of w we have

fr,w)- f(w) as r—-1

and this is true, in particular, for all those @ where f(w) is continuous. But we want
to prove that a considerably more general statement holds. We will now turn to this.

§ 55. Behaviour of the Poisson integral at points of continuity of a function

Let us prove the following theorem due to Fatou!l,
THEOREM. If f (w) is continuous at some point P(1, w,), then for the Poisson integral

flr,o) = -71; ff(t) P(r,o — )dt (55.1)

we have

Sf(r, @) = f(oo)
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no matter how M(r, w) tends to P(1,w,), provided it remains inside the circle of unit
radius.
First we will note the following properties of a Poisson kernel:

(@) P(r,t) >0 atanytand 0 <r < 1.
(b) We have

1 T
?fP(r, Ndt=1.
Indeed from (54.4) supposing f(¢) = 1, we find that

1 L
1=—n—fP(r,t——w)dt=;fP(’,t)dt- (552)

(©) If || > 4, then we have

m(r,8) = max P(r,t)»0 as r—1. (55.3)
s<{|t|<in
Indeed
1 —2rcost+r>>1-—2rcosd +r> for § <|t| <=,

and therefore
1—-1r2

0<P(.1n< 2(1 — 2rcosd + r?)’°

which also proves our statement.
From this and from (b) it immediately follows for any 6 > 0 that:

@

s

2
lim;JP(r, H)dt =1. (55.4)
0

r—>1

Indeed, due to the evenness of P(r, ¢) we have from (b)

n [ E g
1—'~2*-J‘P tdt—ifP d 2 P@r,t)d
- = [ Penar= = [re.var+ = [ Po.nar,
0 0 6

and the latter integral does not exceed (2/m) m(r, ).
Now in order to prove the theorem we note first that, multiplying (55.2) by f (wo),
we have

1 I
f(wo) = ;ff(wo) P(r,t — w) dt.
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Subtracting this equation from (55.1) we find

1 T
fr, o) — f(wo) = ;f[f(t) —f(@o)] P(r, t — w)dt. (35.5)

Let ¢ > 0 be given. We choose d so that
|f(@®) — flowe)| <& for |t — we] < 8, (55.6)

and divide the integral (55.5) into three: for the range wy — § < ¢ < wo + 0 and for
the ranges (—@ < t < wy — 0) and (wy + 6 < ¢ < 7). Due to the Poisson kernel
being positive, and from (55.6) and (55.2) we have

wo+6 wo+6
2 v -seore, - o< E [ pei-aa
wg—d wo—0

€
<;fP(r,t—w)dt=e.

—n

As regards the integrals in the remaining intervals, in them [¢ — w| > 0 and there-
fore due to (55.3) it is possible to obtain

Pr,t —w)<e,

provided r is taken sufficiently close to 1. Then the modulus of each of these integrals
does not exceed

= [uror+17@ona,

i.e. it can be made as small as desired.
The theorem is proved.

§ 56. Behaviour of a Poisson integral in the general case

We proved in § 55 that if f(®) is continuous at w = wg, then the Poisson integral
tends to f(w,) independently of the path by which M (r, ©) tends to the point P(1, w,)
(provided it remains inside the circle of unit radius).

In the case when f(w) is not continuous at o = w,, matters become more com-
plicated. However, here it is possible to obtain good results only if M tends towards P
not by any path but by non-tangential paths to the circle. This means that we permit
the point M to move towards P provided it remains the whole time within some angle
@ of magnitude 2¢ < x with the bisector coinciding with O P (see Fig. 12).

Before studying the behaviour of the Poisson integral in the general case, we will
prove a theorem by Fatou, concerning the behaviour of the partial derivative of
f(r, w) with respect to .
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THEOREM 1. If f(w) possesses a finite derivative at the point P(1, w,), then

LD, 1w

if the point M(r, w) - P(1, w,) by any non-tangential path.

In order to prove this, we will first prove a lemma.

LemMA 1. Let f (u) have a bounded derivative f' (w) in some interval (o', »") and let
f"(w) be continuous at some point w, of this interval. Then

SO, 1)

where M(r, ) - P(1, we) along any path, provided it remains within a unit circle.
We have from (55.1)

af(r w) _ ff() 6P(r t— )dt. 6.1
Since
dP(r,w) — (1 = r?® 2rsinu
du [l — 2rcosu + r?’I*’ (56.2)

then 0 P(r, u)/0u is an odd function, negative or equal to zero in [0, =], whilst for
any 6 > 0 we have

AP(r,u)
max
s<lul<n| O

20 — )
S [t = 2rcosd + r2)?

-0 as r-1. (56.3)

We choose § so that (wy, — &, we + 6) lies within (@', w") and divide the integral
(56.1) into two for the interval (wo — &, wo + 6) and for the remaining part of the

4

P

Fic. 12

circle. In the second integral for any ¢ > 0, provided M becomes sufficiently close
to P, the modulus of the factor d P(r, t — w)/d w becomes less than ¢ by virtue of

(56.3), which means that the whole integral will not exceed ¢ | | f(¢)| dt. As regards the
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first integral, integrating by parts, we have

wo+0d aP 1 wotd aP .
o ff() PO g [ 0 D
1 wo+0
- - Uore -l
wo+o
+ 71{ ff’(t)P(r,t—w)dt.
wo—4

Here the integrated term tends to zero when M — P, because the Poisson kernel
tends to 0, and f(¢) is bounded as far as the integral is concerned, so that it is possible
to consider it to be the Poisson integral of the function equal to f/(¢) in (wo — 9,
wgy + 0) and zero in the remaining part of the circle; this function, by hypothesis, is
continuous at @ = w,, and therefore on the basis of the preceding results, this inte-
gral tends to f’(wo), no matter how M tends to P.

Thus our assertion concerning df (r, ®)/d w is true and Lemma 1 is proved.

We shall now prove Theorem 1. First, werefutethehypothesisthat /7 (w)is continuous
at wg and confine ourselves to the fact that it exists and is finite ; then we will consider
movement along non-tangential paths.

For simplicity of argument, we will suppose that w, = 0 and £(0) = f”(0) = 0(this
does not decrease the generality, as it is possible to consider instead of f(w) the
function f;(w) = f(w) — f(0) — wf’(0) and to study the behaviour of the Poisson
integral for it).

Thus, we should prove that if f(0) = f/(0) = 0, then

ﬁfa(;’ “) o, (56.4)

if M(r, w) - P(1,0) by any tangential path.
First we note that because of our conditions we have lim (f(¢)/¢) = 0, and therefore
for any ¢ > 0 itis possible to find § > 0 such that
WG
’&t)lq at |¢] <. (56.5)
|

For the remainder it is convenient to take § < /2.

Let (1) =0in (= 0,0), P@) =f()in 6 < |t| <mand Pt + 22) = V(). It
is clear then that denotlng its Poisson integral by ¥ (r, w), we have

oW (r, a)) J‘ f()aP(r t — )

— (56.6)

6<|t[<n

On the other hand, since V() satisfies the conditions of Lemma 1 in (— 4, é)and
Y'(0) = 0, then d ¥ (r, »)/0d > 0, when M(r, w) — P(1,0) along any path. Hence it
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follows that the integral on the right-hand side of (56.6) tends to zero, and therefore
it follows from (56.1) that (56.4) will be true, if we prove that the integral

““f ()ap(rt o)

can be made less than Ce where C is a constant. But by virtue of (56.5) we have

OP(r,t —
f \ (r ) |y,
We now prove that the expression
OP(r,t — &)
0= tT (56.7)

remains bounded in — 8 < ¢ < 4, when the point M(r, w) - P(1, 0) along any non-
tangential path.
In order to prove this, we remark first that on the basis of (56.2)

[2rsin(t —w) (1 — r3)| _ 2|t] |sin(t — w)]
IQl - ltl |e" - reiwlz < |eit — reiw|2

Since
et — re®| = |l — r| < |sin(t — w)],

because the modulus of a complex quantity is not less than the modulus of its imagin-
ary part, then
2¢
gl < e —reo| "

reiwl

Moreover, we note that § < 77/2 and therefore |#| < (7z/2) [sin¢|, whence

| sin|
|en _ reicul .

[Ql <= (56.8)

We can confine ourselves to considering the case —z/2 < w < x/2, because
M(r, w) > P(1,0).Figure 13 holds for @ > Obutthecasew < OQistreatedinanexactly
similar manner.

Since we are concerned with non-tangential paths, there exists an angle KPK’
with a vertex at P and the bisector OP such that the point M as it approaches P
cannot go outside this angle. Letting « = KP)’ where Py is a line, passing through
P, parallel to the axis Oy, we see that the vector P M forms with the positive direction
of the abscissa axis an angle ¢, where ¢ > /2 + « (if @ < 0, then we will have
@ < 3m/2 — «) whence it is clear that re® = 1 + g €%, where g is the length of the
vector MPand#/2 + o <o <372 —a,ie.a <o — a2 <z — a.

Thus

Qe = Qel— ex (W—E) = iQel ("’-7) = z'gelW

2
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where « <W¥ < 7@ — «. Therefore

e“——re"";= et — 1 — jpet?| = eiti_ le""—gl
s ~il
_ e2_2ie 2 Zei(%—w)_e _ 2s1n%ei(% w)_g
>2 sinisin (i— 'P)l (56.9)
S 2

(Here we again use the fact that the modulus of a complex quantity is notless than
the modulus of its imaginary part.)
Now from (56.8) and (56.9) we conclude

| sint| 1

(=) )

If |#] < «, then |sin(#/2 — ¥)| > sin («/2) and then

g <=

2 |sin —

2

2] <

174 2

s E
i.e. Q is bounded. If 6 > |t] > «, then for M(r, w) » P(1, 0) the denominator in
(56.8) is bounded below, which means that |Q] is again bounded. This concludes the
proof of Theorem 1.

Y
K
o
M
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Using the proved Theorem 1, we can now obtain a result referring to the behaviour
of the Poisson integral for any summable function f(x). We will prove the following
theorem, also due to Fatou:
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THEOREM 2. At any point wy, where f(w) is the derivative of its indefinite integral,
the Poisson integral f(w, r) = f(wo), if the point M(r, w) tends to the point P(1, wg)
along any non-tangential path.

In particular it follows that the Fourier series of any summable function is summable
by Poisson’s method to this function almost everywhere.}

In order to prove this we will suppose that

F(w) = | f()dt.
We have, integrating by parts,

!

1
f(r,w)= ;[F(t)P(rst"w)]

A 10 9
- f F() 5= [P £ — )] dt.

The integrated term tends to zero when M — P(l, w,) provided w # —= and
o # m. As regards the integral, it is possible to rewrite it in the form

24

-7

—a% {l fF(t) P(r,t — w) dt} = %F(r, w), (56.10)

and therefore, only on the basis of the result just obtained, if M(r, w) » P(1, wg)
along a non-tangential path, the expression (56.10) tends to F’(w,) everywhere, where
F’(x) exists and is finite. Consequently, at any point where f(wo) = F/(w,) we have
f(r,w) = f(we) and this is what was required to be proved.

Since from the theory of the Lebesgue integral it is known that the equality F/(w)
= f(w) holds almost everywhere, then it follows in particular that for almost all

values of w
f(r, o) - f(o),

where M(r, w’) - P(1, ) along any non-tangential path. This occurs even more so,
when M(r,») - P(1,w) as r - 1, whence it is evident that the theorem of § 53
is a corollary of Fatou’s theorem.

We will now look at the role played by the Poisson integral in solving the celebrated
Dirichlet problem.

§ 57. The Dirichlet problem

This problem was set by Dirichlet in the following form: Given a closed contour
and a function f(x), continuous on it, it is required to find a harmonicjt function
inside this contour tending to given values on the contour when the point tends by
any method from inside to the periphery.

1 Moreover, it is summable almost everywhere to f (x) by method A* (see the definition of 4* in
§ 7 of the Introductory Material).
t1 That is, it satisfies Laplace’s equation
02F  0*F
0x? 0y?

=0.
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We will discuss the particular case when the contour under consideration is a
circle of unit radius with centre at the origin. If we denote by x and y the Cartesian
co-ordinates of the point M(r, w) then we have

F(x,y) =f(r,m) = % + Y (a,cosnw + b, sinnw)r",
n=1

where a, and b, are the Fourier coefficients for f(x) and therefore F(x, y) is the real
part of the analytic function inside the circle of unit radius, defined by the power series

ao & .
- + Y (a, — ib)z", z =re®.
n=1

But it is known that the real (and imaginary) part of any analytic function is a har-
monic function, that is, it follows from the theorem of § 55 that the function F(x, »)
gives the solution of the Dirichlet problem for a circle.

If the Dirichlet problem is extended by not requiring the values of the function
given on the boundary to define a continuous function, but permitting the point to
tend from inside to the periphery only along non-tangential paths, then F(x, y) tends
to f(w) almost everywhere and thus gives the solution of the generalized Dirichlet
problem.

§ 58. Summation by Poisson’s method of a differentiated Fourier series

Let
A
o(F) = 70 + Y (4o cosnx + B, sinnx). (58.1)
We know that the series
Y.n(B, cosnx — A, sinnx), (58.2)

obtained by differentiating (58.1) should not be a Fourier series, since its coefficients
a,=nB, and b, = —nA,

should not even tend to zero. Therefore, the preceding theorems cannot be applied
to series (58.2). But instead we have the following:

Fatou’s THEOREM. If at some point x the function F(x) has a symmetrical derivative
equal to the value 1, then by differentiating the series 6(F), we obtain a series which is
summable at the point x to the value I by Poisson’s method.

Since lim [F(x + k) — F(x — h)]/2h, if this limit exists, is the symmetrical deriv-
h->0
ative, then by the condition of the theorem

. Fx+h—-Fx-—-£h
lim

= [, 58.3
Jm 2h (58.3)

Supposing, as always
Ao

F(r3 x)= 2

o0
+ > (4,cosnx + B, sinnx)r",
n=1
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we can write
AF(r, ® .
-T(;—xl =) (B,cosnx — A,sinnx)r". (58.9)
n=1

Here term-by-term differentiation is valid, since at r < 1 series (58.4) converges
uniformly relative to x. It is necessary for us to prove that

dF(r, x)
—— =] as r-1.
dx
But
IF(, 1 3aP(t— 1 [ 8P(rt—
0@ ;fﬂ>(r )d=—;fm%4%rﬁm,6w>

and since d P(r, u)/du is an odd function (see (56.2)), then

dF(r, x)

aP(r,u)
ox =__fF( M W

= - —f [Fx + ¥) — F(x — W)] ——— 6P(r u)

By virtue of (56.3) for any ¢ > 0 and 6 > 0itis possible to choose r, < 1 such that
|0P(r,w)/ou]l <eford <u<mandro <r<1. Therefore

(u)

IF(r,
OF(r, x) Ddu+ 1, (586

e =——fwu+w F(x — u)]

where

2
11l < -nf le(t)Idt < Cs, (58.7)

—7

where C is a constant. From (58.3) it is possible to suppose that the number 4§ is so

small that
F(x + u) — F(x — v)
I 7 -l <e. (58.8)
Then from (58.6), (58.7) and (58.8)
]

dF(r, l F — F(x — JdP(r,

(rx)=_ J‘ (x + u) (x u)2u (ru)d_*_I1

dx 7 2u du

0
8

1 F(x +u) — F(x — uw) 0 P(r, u)
Il—;fl: 2u —IJZquu

é
l dP(r, u
~ Zquu =IL +1, + 1. (58.9)
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Due to (58.8) we have s
BP(r, u) |
[1,| < 7!— U la’u < Cie, (58.10)
0

where C; is a constant. Indeed, from (56.2) we see that

i AP(r, u) 2usinu
u

T
: <zm, for 0 <u<—.
Ju sinu | )

For I, integrating by parts, we find that

21 dP(r, u) 21 21/
13= —“‘7—;‘ T = —;—6P(r,6)+“n~fP(r,u)du->1. (5811)
0
because P(r, §) — 0 and from formula (55.4).

Now from (58.7), (58.10) and (58.11) we obtain
3F(r, x)
s Ny

as r-—1,
and the theorem is proved.

Note. Since the presence of the normal derivative at some point guarantees the
existence of a symmetrical derivative at that point and their equality, then from this
it follows in particular that:

If at some point x the derivative F’'(x) exists and is finite, then 3 F(r, x)/0x — F'(x)
asr — 1,i.e. when F(x) has afinite derivative, the differentiated Fourier series is summable
to this derivative by Poisson’s method.

In § 56 we have essentially already obtained this result (only it is formulated in
different terms). Now we will see that the requirement of the existence of F’(x)can
be replaced by the weaker requirement of the existence of a symmetrical derivative.
But whereas in the theorem of this section M(r, xo) — P(1, x,) along the radial path,
in § 56 it was proved that M(r, x) - P(1, x,) along any non-tangential path.

§ 59 1. Poisson-Stieltjes integral

The Poisson-Stieltjes integral is the name given to the expression
1
u(re'®y=— | P(r,t —0)d ¥,

where ¥(¢) is some function of bounded variation in [— =, . Integrating by parts,
we obtain

u(re'®) =

= 1 f 3
T f?’(t)a—tl’(r, t — w)dt.

—r

1 This section can be omitted at a first reading.
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If ® # + =, then the integrated term as r — 1 tends to zero. As regards the integral,
from Theorem 1, § 56 it should tend to ¥’ (w,) at any point wg, where ¥’ (w) exists
and is finite, only if the point M(re'®) tends to the point P(e'®°) along any non-
tangential path.

In particular

if P’ (w) exists and is finite.

Hence as a corollary we obtain: the Fourier—Stieltjes series is summable by the
Abel-Poisson method almost everywhere.

Later we will find it useful to prove thatifw # +mwand¥’(w) = + oo, then we have

u(re®)->¥(w) as r-1,

u(re!y—> +ow as r—1.

In order to prove this, from what has been said concerning the integrated term, it is
sufficient to prove that

1 0
I= - fT(t)a—tP(r,t—-w)dt» +ow as r—1.
It is just the same kind of integral as (58.5), therefore we see immediately that for
anye >0

I= ——f[W(wH) Y’(w—u)]ud wu+ Il =1, + I,

where |I;]| < ¢, if 0 is fixed and r is taken sufficiently close to 1. Now we represent
1, in the form

- ——f[xv(w+u) ) T8 g

dP(r, u)
Tdu =1 + I,. (59.1)

-2 f [¥() ~ ¥(o - )
0

We will show that I; —» + o and I, - + oo. The proof for both integrals is
completely identical. We will carry it through for 1.
Since W’ (x) = + oo, we can, if 4 is given, suppose that d is so small that

P+ u) —¥P(w) > Au for 0 <u<4.
We have

L = _%f?l’(w +u)— VY@ [ aP(r, u)] du,

u Ju
0

but —u d P(r, u)/0u > 0 (see (56.2)), therefore

13>A—f[ aP(””)]du
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and we have seen (see (58.11)) that
0P
—f[ (r u)]du—>l as r— +1,

whence it follows that as r — 1 it is possible to make I5 > A/2 where A is previously
given and the proof is concluded.

Note. That the Fourier-Stieltjes series or the series obtained after differentiation
of the Fourier series for a function of bounded variation (see § 23) cannot be a Fourier
series is evident from this simple example: the series

@© sinnx

Z

as we know (see § 41) is the Fourier series of a function monotonic in [0, 2x}; how-
ever after its differentiation we obtain the series

> cosnx,

n=1

which is not a Fourier series because its coefficients do not tend to zero.

§ 60. Fejér and Poisson sums for different classes of functions

We will now prove a number of theorems which will show that it is possible to
judge the properties of a function by studying the sequence of its Fejér or Poisson
sums.

THEOREM 1. In order for the trigonometric series to be a Fourier series for a continuous
Sunction, it is necessary and sufficient for the sequence of its Fejér sums {6,(x)} to con-
verge uniformly.

The necessity of the condition is given simply by Fejér’s theorem (see §47). To
prove its sufficiency, we note that if the given trigonometric series is

8o

-5 Tt Z (@, cosnx + b, sinnx),

then

n k
on(%) = Y (1 - )(ak coskx + b, sinkx), (60.1)
=0 n+1

and therefore for k < n

k 1
(1 — )ak = ~fa,,(t) cosktdt,

24

(1 K b—lf inktd
_n+1) = o,(t) sinkt dt.

-

(60.2)
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If the sequence 0,(x) converges uniformly, then supposing f(x) = lim o,(x), we

n—> 0
see that f(x) is continuous. As n — oo from equations (60.2) by passing to the limit
we obtain

1
a = ff(t)cosktdt k=0,1,..),

—T

1
b, = ;ff(t)sinktdt k=12..),

and this is what was required to be proved.
THEOREM 2. For the trigonometric series to be a Fourier series for a bounded function,
it is necessary and sufficient for a constant K to be found for which

lo,()] <K (n=1,2,...; 0 <x <2m).

The necessity of this condition was proved in § 48. To prove its sufficiency we note
that if it is satisfied, then

1 2
; O'"(x) dx < 2K2.

-7

But due to Parseval’s equality we obtain from (60.1)

*f oa(x) dx = ”2§ + 3 (1 - nil)z(ahbi).

From this it follows that if m is any integer, m < n, then

ag m(l k )2(2 b2 <2K2
2+k§1 _'n+1 ak‘l" k)\ -

Letting n — oo and keeping m constant, we conclude from this that

2
Q

5+ X (@ +b) <28

and since m is any number, the series ) (a7 + b7) < + oo.

This means that the trigonometric series under consideration is a Fourier series of
some function f(x)e L% But since 0,(x) > f(x) almost everywhere, then from
jon(x)| < K it follows that | f(x)| < K and the theorem is proved.

THEOREM 3. For the trigonometric series to be a Fourier series for f(x)e L?(p > 1),
it is necessary and sufficient that

loa@) e, <K (n=1,2,..), (60.3)
where K is a constant.
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To prove the necessity we note that

1 24
500 = [ FOK @~ 2y ar.

Therefore, noting that (1/7) f K,(u) du = 1andthat K, () > 0and applying thelemma

proved in § 9 of the Introductory Material, we immediately find
loaG e < 1) ze (60.4)

and since the right-hand side of (60.4) does not vary with #, the proof is concluded.
To prove the sufficiency we will consider the functions

F,(x) = fxa,,(t) dt (60.5)
0

and prove that they are uniformly absolutely continuous, i.e. for any ¢ there exists d
such that for any system of non-overlapping intervals (a;, b;) with a sum Y (b;—a;)
< 6 we have

YIF(b) — Fy(a)| <e. (60.6)

Indeed, denoting by S this system of intervals, because of (60.3), we have
bi
Y IFG) — Fu@) <Y [ lo,@) dt

- Sj lo,()| dt < (Sf |a,,(t)|"dt)1/p (Sf l‘ldt)”q < 8" |joul, < 8K < &,

if 6 is sufficiently small.

Arguing this, we see that the complete variations of these functionsare all bounded.
Therefore, from Helly’s theorem (see Introductory Material, § 17) it is possible to
extract from them the sub-sequence F, (x) which converges at every point to some
function F(x); according to Helly’s theorem it should be of bounded variation, but
from the uniform absolute continuity of the function F,(x) it immediately follows that
it is absolutely continuous.

In fact, if in formula (60.6) instead of » we write n; and pass to the limit as j — o0,
then we obtain

Y |F(b) — F(a)| <e.

Let us prove now that the series under consideration is a(f) where f(x) = F’'(x).
Indeed, we have
2n 2n 2n 2
[ 0(t) coskt dt = F,(t)coskt| + k [ F,(t) sinktdt = F,(2n) + k [ F,(¢) sink¢ dt
0 0 [} 0

and
2n

27
[o,(t)sinkt dt = — k [ F,(¢) coskt dt.
0 0
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Letting n — oo for the sequence #;, for which F, (x) — F(x), we obtain from form-
ula (60.2) 2 2

1 k k
a, = —FQ2m) + —fF(t)sinktdt, by = —-—fF(t)cosktdt
7 4 14
0 0

(passage to the limit under the integral sign is valid here due to Lebesgue’s theorem

(see Introductory Material, § 14)).
After integration by parts of the last two integrals we conclude from this that

2% 27

1 1

a; = ;ff(t)cosktdt, bk = ;ff(t)Sinktdt’
0 0

and this is what was required to be proved.

It remains to prove that f (x) € L?. But for this it is sufficient to note that ¢, (x) - f(x)
almost everywhere, then, using the inequality (60.3) and Fatou’s lemma (see Intro-
ductory Material, § 14), we immediately obtain || f(x) [, < K.

COROLLARY. If f(x)e L?, p > 1, then

2n

[1f () = 6,(x)Pdx >0 as n— oo. (60.7)
0

We already know (see (60.4)) that if f(x)e L?, then
loaG) e < Bf G Lo

Let £ > 0 be given. It is possible to find (see §28) a trigonometric polynomial
T(x) such that

[£x) = TG e < e (60.8)
Consequently, for any n

lon(x, f = T)ze < e,

" an(xsf) - on(x9 T) ”Lp <eé. (60'9)

But since T'(x) is a trigonometric polynomial, then the continuous function o,(x, T)
tends to T'(x) uniformly, and even more so

lon(x, T) = T(x) l» < & (60.10)

provided n becomes sufficiently large. Therefore, from (60.8), (60.9) and (60.10) we
have

i.e.

Lf ) = o N e < NS = T 2o + || T(x) = 0ulx, T) e

+ 10a(x, T) = 04(x, /) 20 < 3¢,

if n is sufficiently large and thus (60.7) is proved.
Below, in the proof of Theorem 4, we shall see that this assertion holds too for
p = 1l,i.e if f(x)e L, then

2n
[1f®) = 0,()]dx >0 as n— oo,
0



168 BASIC THEORY OF TRIGONOMETRIC SERIES

However, Theorem 3 holds only for p > 1. In fact, if p = 1, i.e. if
27
[lo,@)l dx <K,
0

then we cannot assert that the series under consideration is a Fourier series (see the
note to Theorem 5 below). The case of a Fourier series is considered in the following
theorem:

THEOREM 4, In order for a trigonometric series to be a Fourier series, it is necessary
and sufficient that

2n
flam(x)——a,,(x)]dxao as m— o and n— ©.
0

We know (see § 47) that

1 T
5 = /@) = [ e+ 0 = 1K) dr.
Therefore, supposing that -

P(t) =_f|f(x + 1) — f(x)] dx,

we have

[ 1000 = 701 <f{%flf(x+ 0 - £ Kty dt | dx

—n

1 f4
- f FG)K, (1) dt. (60.11)

If we denote by o (x) the Fejér sum for o (¥), then

l Fi1
oF(x) = - f‘F(t + x)K,(r) dt,
and therefore, from (60.11) -
[10a(x) = ()] dx < 03¥(0).
But since ¥ (¢) is continuous and ¥ (0) = 0, then 0,¥(0) = 0 as n — oo, which means
that N
[ loa(x) = £(x)] dx - 0. (60.12)

From this we obtain

T

J 1w — o)l dx < [[0,(x) — f@) | dx + [ f(x) = 6,(x)| dx =0

—7

and the necessity of our condition is proved.
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To prove its sufficiency we note that from

2n
f|o,,(x) —0(x)}dx—>0 as m-o ©, n—> x©
0

the existence of the constant K, for which
2n
[lo.)ldx <K (n=1,2..).
0

follows. Supposing, as in Theorem 3,
F,(x) = [o,() dt.
0

then we will prove in the same way that the sequence of functions F,(x) is uniformly
absolutely continuous. Here, using the notation of Theorem 3, we have

S | Fy(b) — Fu(a)! < [lo,(t)] dt. (60.13)
S
But
[lo.(0) dt < [1o,(1) — ou(t)| dt + Sf low(£)| dt
S S

2r
< f [6,() — o, ()| dt + flak(t)] dt. (60.14)
0 N

Let ¢ > 0 be given. Due to the condition of the theorem it is possible to take k so

large that
2x

fla,,(t) — o) dt <-§~ for n> k. (60.15)
0
We will now fix k; then, taking 4 sufficiently small, it can be proved that

f lo,(8)] dt < &/2 at p < k provided mS < 6. But if this is so, then from (60.14)

S
and (60.15) [loa(6) 1 dt < &
S

and consequently from (60.13)
LIFB) — Fa)l <e at } (b —a)<3.

Now as in Theorem 3 we see that it is possible to remove from the sequence
{F,(x)} a sub-sequence converging to some F(x) which should be absolutely continuous
and moreover, the series under consideration is a Fourier series of F’(x).

The theorem is proved.

Note. In the process of this proof we have established that for any f(x)e L we have

2n
[1f) — 0,(x)|dx >0 as n- . (60.16)
0

Finally, we shall prove yet another theorem.

7 Baryl
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THEOREM 5. In order for the trigonometric series to be a Fourier-Stieltjest series, it
is necessary and sufficient that

[lo,x)ldx <K (n.=1,2,..),

where K is a constant.
The necessity of the condition follows from the fact that for a Fourier-Stieltjes
series we have

1
O,(x) = - fK,,(t — x)dF(t) (60.17)
(this formula is derived in just the same way as (47.2)). Therefore

1 7T
0.1 < - [ Kate ~ 0 14R,

where |dF| is no different from dV(¢), if V(¢) is taken to be the complete variation
of F(x)in 0 < x < t. Hence, by changing the order of integration, we obtain

2z

2 2n
1
[o,(x)] dx < {~ K, (t — x) |dF(2)] } dx

0

27 27 27
1
- f]dF(t)l;fK,,(t—x)dx= J-IdFI =V,
0 0 0

where V is the complete variation of F(x) in [0, 27].

Thus, the necessity is proved.

In order to prove the sufficiency, we will again turn to considering the function
F,(x) already considered in Theorems 3 and 4. It is true that we have not been able
to prove that they are uniformly absolutely continuous but nevertheless they are of
uniformly bounded variation, because

Xi+1q

2n
YIF(xip) — B <Y [ loa(®]dt = [[o,()1dt < K
Xy 0

for any division of the interval [0, 2x] by the points x;. Therefore, from Helly’s
first theorem (see Introductory Material, § 17) a subsequence n; exists such that
F,,(x) = F(x) for any x of [0, 2], where F(x) is of bounded variation. It remains
to prove that the given series is the Fourier-Stieltjes series of d F.

T See § 23, point (9).
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For this, as in the proof of Theorem 3, we have

2n

2
k 1 F,Q2 k )
(1 - )ak = — fa,,(t)cosktdt = (2m) + — fF,,(t) sinkt dt
L 7 7
0

n+1
0

and then by integrating by parts we obtain
2=

k 1
(l - m) a = _ fcosktdF,,(t).

0

Permitting » to tend to infinity for the sub-sequence n;, we find

2n

1

a, = — fcosktdF(t)
V]

13

and similarly for b, (passage to the limit is valid from Helly’s second theorem,
Introductory Material, § 17).

The theorem is proved.

Note. We know (see § 59) that not every Fourier-Stieltjes series is a Fourier series.
Thus, the condition

[losldx <K (mn=1,2,..)

is not sufficient for the series to be a Fourier series and this shows that at p = 1
Theorem 3 no longer holds.

Taking into account that the Fourier-Stieltjes series is the result of differentiating
the Fourier series for a function of bounded variation, we obtain as a corollary of
Theorem 5 the following theorem:

THEOREM 6. For the trigonometric series to be the Fourier series of a function of
bounded variation, it is necessary and sufficient that

2n
[los@ldx <K (n=1,2,..).
1]

All the theorems that have been proved have referred to Fejér sums. If instead of
them we consider Poisson sums, i.e.

a, S .
flr,x) = -+ Y. (a,cosnx + b, sinnx)r"
X n=1
and note that

l k14
60 =2 [10Pe -9,
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where P(r, u) is a Poisson kernel, then it is possible to prove completely analogous
theorems; indeed, in this proof we used the whole time the expression ¢,(x) in the
form

1
0 =+ [ 10K~ 2 ar
and we based the proof only on the facts that K,(#) > 0 and

1
; fK,,(u) du=1,

El’lt ve alsc lla'e 1 (l b4 u) > C aIld
:tf
(’ ) .

Therefore the whole argument can be carried out word for word (the fact that r — 1
for all values of r, not just for a sequence, does not play a part, since it would be
possible to consider the sequence r;, — 1 as kK — co and to use the kernels P(r,, ») in
the discussion).

Thus the following theorems are obtained.

THEOREM 1. In order for a trigonometric series to be a Fourier series of a continuous
Sfunction, it is necessary and sufficient for its Poisson sums f (r, x) to tend uniformly to a
limitasr— 1.

THEOREM 2. In order for a trigonometric series to be a Fourier series of a continuous
function, it is necessary and sufficient that a constant K exists, for which

0<r<l1,

<K,
eI <K o\ <o

THEOREM 3. In order for a trigonometric series to be a Fourier series for f(x)e L?
(p > 1), it is necessary and sufficient for
Nfr e <K, 0<r<1.
Moreover, if f(x)e L? (p > 1), then
IfC ) ee < NS lze- (60.18)

We also have

2n
[1f) = f(r,0)Pdx >0 as r—1, (60.19)
0
whilst this is true both for p > 1 and for p = 1.
THEOREM 4. In order for the trigonometric series to be a Fourier series, it is necessary

and sufficient that

27
flf(r,x)—f(@,x)ldx—ro as r—1 and p->1.
o .
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For the case of a Fourier-Stieltjes series the argument is somewhat more compli-
cated. We will not go through it, but will confine ourselves to formulating the theorem
analogous to Theorem 5, namely:

THEOREM 5. For the trigonometric series to be a Fourier-Stieltjes series, it is necessary
and sufficient that

2
[1f(nx)dx <K, 0<r<l1.
0

We note that in Chapter VIII (§ 14 and § 20) instead of Fejér or Poisson sums of a
Fourier series we shall study its partial sums S, (x) and for them we shall consider the
question of the behaviour of ||S,|z» and || f — S,llze atp > 1.

§ 61. General trigonometric series. The Lusin-Denjoy theorem

Up until now we have studied Fourier series. Now we will consider trigonometric
series of the same general type and prove a number of very simple but important
theorems concerning them. We will begin by considering the question of when the
trigonometric series converges absolutely in a set of positive measure. Here we have a
theorem proved simultaneously and independently by Lusin!®! and Denjoy!?l,

THE LUSIN-DENJOY THEOREM. If the trigonometric series

a, & .
- + Y (@, cosnx + b, sinnx) 61.1)
n=1

converges absolutely in the set E, mE > 0, then
2 (a,] + [b,]) < + 0.

Let us define g, = \/a + b2, n=1,2,..)and let

a,

a, = 0, 5 =0 @y = Q,CO8%y, by, =p,sina, (n=1,2,..).

Then the series (61.1) takes the form
nioen cos(nx — ). (61.2)
Absolute convergence of the series (61.2) in E means that
niog,, [cos(nx — )] < + oo for xekE. (61.3)

According to Yegorov’s theorem, it is possible to find a perfectset P <« E,mP > 0,

in which the series (61.3) converges uniformly. Let S(x) be its sum in P, then from the
uniform convergence of (61.3)

f Sx)dx = fg,,f [cos(nx — «,)| dx.
P n=0 P
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But

f |cos(nx — a,)| dx > fcosz(nx — o) dx
P P

1 1 1
=5 f [1 + cos2(nx — a,)]dx = EmP + 5 fcosZ(nx — a)dx.
P P

If £ (x) denotes a function equal to 1 in P and zero outside it, then

T

f cos2(nx — a,) dx = ff(x) cos2(nx — a,)dx
P

—7

= cos2q, ff(x) cos2nx dx + sin2e, ff(x) sin2nx dx, (61.4)

—7 —

and therefore
fcos2(nx —a)dx—->0 as n— o0,
P

since the integrals on the right-hand side of (61.4) differ only by a bounded multiplier
from the Fourier coefficients of f(x).
From this it follows that

1
flcos(nx —a)|dx > ZmP
P

‘where n is sufficiently large, which means that the convergence of series (61.3) implies
the convergence of the series ) g,, whence it follows that

Yolal < +0, Y b < +00.
The theorem is proved.

§ 62. The Cantor-Lebesgue theorem

We will now consider the coefficients of a trigonometric series, if it converges not
absolutely but simply in a set of measure greater than zero.

Here we have

THE CANTOR-LEBESGUE THEOREM. If a trigonometric series converges in a set E,
mE > 0, then its coefficients tend to zero.

In fact, if

Y oncos(nx — «,) ' (62.1)
converges in E, mE > 0, then we have

lim g, cos(nx — «,) =0 for xekE.

n-—ow
If a sequence ny, n,, ..., H, ... 1s found, such that

On, =0 >0, (62.2)
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. h .
then we evidently have lim cos (ngx — %) = 0, xe E.
k>

We will prove that this is not possible. Indeed, then we would have

lim cos?(mx — a,) =0, x€E.
k-
According to Lebesgue’s theorem on the validity of passage to the limit under the
integral sign for all-bounded functions, we have, integrating for the set E

lim fcosz(nkx —a,) =0.
k>w E

But since by a similar argument to that in § 61, we have

1
lim | cos?(mx — o, ) dx = —2—mE,
k—)ooE

and mE > 0, then we arrive at a contradiction.
Consequently, it would be impossible to assume (62.2), therefore
lim g, = 0, (62.3)

n->0
and the theorem is proved.

Note. The name of this theorem is explained by the fact that Cantor proved it for
the case when the series converges in some interval [a, ] and Lebesgue generalized
it for the case of any set of positive measure. We think it appropriate here to prove
Cantor’s theorem separately, as it does not require a knowledge of Lebesgue’s integral.

Thus, let the series (62.1) converge in some interval [a, b]. For convenience we will
rewrite it in the form

Y oncosn(x — ay). 62.49)

It is required to prove that g, — 0. We will show that this is untrue; then 6 > 0 can be
found such that

0n >0 (62.5)
for an infinite set of values of n.

We shall denote the length of the interval [a, #] by d. When x runs through [a, 5],
then x — a, runs through an interval of length d. Taking n, such that n,d > 2x, we
see that cosn, (x — a,,) can run through all its values, while x runs through [a, 5],
which means that it is possible to find an interval [a,, b,] within [a, ] such that this
cosine > 1. If nis chosen so that (62.5) is satisfied, then

On, COSPL (X — @, ) > 5 @ < x < b,.

Let d, = b; — a,. Arguing in the same way as before, we can choose 7, so that
(62.5) is satisfied for it and so that n,d; > 27, then in the interval [a,, b,] an interval
[a2, b,] is found for which cosn,(x — «,,} > % and therefore

ony cosny(x — a,) > a, <x<b,.

E’
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This process can continue indefinitely, since the numbers » satisfying the inequality
(62.5) belong to an infinite set. We obtain a sequence of intervals [a,, b,], enclosed
within one another, whilst

8
On, COSI(X — @) > 5 (62.6)

There exists a point &, which belongs to all these intervals simultaneously. At this
point £ the inequality (62.6) is fulfilled for all k(k = 1, 2, ...) and therefore

lim g, cosn(x — «,) # 0,

n—»
which means that the series Y 0, cosn(x — «,) should diverge at the point£. However,
& lies in the interval [a, b] where the series converges and we arrive at a contradiction.

§ 63. An example of an everywhere divergent series with coefficients tending to zero

The question arises whether a trigonometric series with coefficients tending to zero
converges in a set of positive measure. This problem was set by Fatou!!! and the
first answer to it was given by Lusin!!l, who gave the example of a trigonometric
series with coefficients tending to zero and divergence almost everywhere (more detail
will be given in §§ 1 and 2, Chapter VII). Then Steinhaus!!! gave the example of a
trigonometric series with coefficients tending to zero and divergent at every point.

Here we will describe an example of Steinhaus given in a later report!s],

Consider the series

® cosk(x — In Ink)

& Ink (63.1)
Let /, = {Ink], v, = Inlnk and
niln cosk(x — vy) ntl 1
a@= % s &= Y
First we note that
] X —0v
T | il SINZK ( 5 k)
&n — &n(X) =k;n:+1 ﬂ[l — cosk(x — vp)] = Zk:;rl e ,
whence
n+ln 5 "
< n n < T~ — 3 .
0<gn— & <5 — k=§+1k (x — vy)

since |sinu| < |u|. Let v, <x < v,y (m >3); then for n + 1 <k <n+1, we
have, because of the monotonic increase in the numbers v,:

Up < Uy < Un+l,.:
and therefore
|x — vl < Oy, — Une
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Applying the mean value theorem to the difference v,,,, — v, =Inln(n + )
— InInn, we find that

- I, < 1
lx_vkl\nlnn \n,
and therefore for v, < x < v,,4
1 1 L\?
- 5 2L = =) . :
80 800 < gy bl + B < (14 1) (63.2)

The right-hand side of the inequality (63.2) tends to 4 as n — co; therefore, for
any ¢ we can find N such that

1
0<g,,—g,,(x)<5+s for n > N. (63.3)
On the other hand
A
g,,}m-’l as n-— 0o,
therefore
g.>=>1—¢ for n>=N, (63.4)
if N is sufficiently great. If ¢ < 1 is taken, then from (63.3) and (63.4)
1 1
g(x) > 5~ 2 > 7 for v, <x<v,; and n>N. (63.5)

Now let x be any point of the interval [0, 2x]. Let us prove that there exists an
infinite set of those values of n for which g,(x) > %. In fact, if we mark off the points
U3, U4, ..., Uy, ON the abscissa axis, then they tend monotonically to infinity, which
means that the intervals [v,, v,,.1] (# > 3) cover the whole of the abscissa axis.

Therefore, every point of the type x + p. 2z certainly lies within some interval of
the type [v,, v,.4]; but g,(x + p.27) = g,(x) and therefore at the point x the
inequality (63.5) is satisfied, if n > N.

But for sufficiently large p the inequality x + p. 2& < v,,, requires n to be suf-
ficiently large, therefore, for an infinite set of values of # > N we will indeed have
g,(x) > %. This means that in the series (63.1) under consideration there is an in-
finite set of “segments” in which the sum of the terms has a value exceeding 4 and
therefore the series diverges. Since this has been proved for any x in [0, 2x], then the
series diverges at every point.

§ 64. A study of the convergence of one class of trigonometric series
Fatou!'! proved a whole series of important theorems referring to series for which

a, =0 (%) and b,=o (—’11—) . (64.1)

But it appears that many of these theorems hold if a weaker requirement is satisfied,
namely

0 =k§lk(|ak| + 1Be]) = o(n). (64.2)

Ta Baryl
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It is clear that (64.2) follows from (64.1) but the converse, generally speaking, does
not hold.

Trigonometric series, the coefficients of which satisfy condition (64.2), possess a
whole series of interesting properties. They cannot be Fourier series (see Chapter VI,
§ 3), but this theorem holds:

THEOREM 1. If the series

a, ao
—21 + Y (a,cosnx + b, sinnx)
n=1

with coefficients satisfying (64.2) is a Fourier series, then it converges almost everywhere;
if it is 6(f), where f(X) is continuous, then this series converges uniformly.

In fact, it is known that if for a trigonometric series S,(x) are the partial sums and
0,(x) are the Fejér sums, then

1S,(x) — 0,(x)] = in Jlr 1 S k(ag coskx + by sink)|
i k=1 i

Loy bel) = o(l 64.3

<t Ekad + 18D = o() ()

because of (64.2). Therefore S,(x) — 0,(x) = 0 uniformly by virtue of (64.3). But
for any Fourier series 6,,(x) — f(x) almost everywhere, therefore S,(x) — f(x) almost
everywhere. If f(x) is continuous, then 0,(x) - f (x) uniformly and then S, (x) - f(x)
uniformly, and the theorem is proved.

As a corollary we deduce the theorem:

THEOREM 2. (Fatou). If a trigonometric series has coefficients of the form

1 1
a, = 0 (—) and b, =0 (_) ,
n n

then it converges almost everywhere.

If moreover it is a Fourier series of a continuous function, then it converges uniformly.

Indeed, it is clear above all that our series is a Fourier series, since Y (a2 + b2)
< + o0. Moreover, as we have already said, (64.3) follows from (64.1), which means
that we have conditions of applicability of the preceding theorem.

Note. The hypothesis relating to continuity is an additional requirement and does
not follow from (64.1). It is possible to show that functions exist for which the Fourier
coefficients satisfy condition (64.1) but, however, they are unbounded in any interval
0, lying in [— m, 7] (see Chapter VIII, § 13).

§ 65. Lacunary sequences and lacunary series

Let us derive some corollaries from Theorem 1, § 64. For this we recall that in
Introductory Material, § 4 we defined a sequence of natural numbers {n,} as satisfying
condition (L), if

— < + ®
kzl ny
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and

i%— &})(m=nz”¢

m
The sequence {n,} is named lacunary if there exists A > 1 such that

Bri1
ny

>A>1 (k=1,2..). (65.1)

Finally, it was proved that any lacunary sequence satisfies condition (L).
Now we will define lacunary series.
DEerNITION. The series

Y. (ax cosmyx + by sinnx) (65.2)

is named lacunary if the natural numbers {n;} form a lacunary sequence (i.e. satisfy
the condition (65.1)).

If the sequence {n,} satisfies condition (L) then we will say that series (65.2) is
an (L)-series (thus, any lacunary series is an (L)-series, but the converse is generally
not the case).

We will prove that if the coefficients of an (L)-series tend to zero, then it belongs
to the class of series studied in § 64. Indeed, the function 7(n) deﬁned in § 64 (see
(64.2)) in the given case takes the form

T(n) = Z ne(la] + |bil).
We will prove that t(n) = o(n), then we will have the conditions of § 64. Since
a, — 0 and b, — 0, then for any ¢ > 0, p is found such that |a,| < ¢ and |b,]| <¢
at k > p.If n,, is the greatest number of the sequence {r,} not exceeding n, then

7(n) =kzlnk([akl + b)) < znk(lakl + b)) + 28k Z M. (65.3)
= =p+1
Since the first term on the right-hand side of (65.3) does not vary with n, then it is
possible to make #, so large that this term will be less than en for n > ny. Then
2 m
—T(n) <é+ =L

Y m<ce (for n>ng),
L™ k=p+1

where c is a constant because for the sequences {n,} satisfying condition (L) we have

INgE]

ny = 0(nm)

x
il

(see Introductory Material, § 4).
Thus

1(n) < ce¢

and since ¢ is as small as desired, then

t(n) = o(n)

and our statement is proved.
From the proved statement and Theorem 1, § 64, we immediately obtain:
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COROLLARY 1. If an (L)-series is a Fourier series, then it converges almost everywhere;
if it is a Fourier series for a continuous function, it converges uniformly.

From the note made above that any lacunary sequence satisfies condition (L) and
from Corollary 1 we obtain Kolmogorov’s theorem!®..

If a lacunary series is a Fourier series, then it converges almost everywhere.

Moreover, from Corollary 1 we also immediately obtain: if a lacunary series is a
Fourier series for a continuous function, then it converges uniformly.

In Chapter XI, § 6 a stronger assertion will be proved, namely, that under the given
conditions, the series should also converge absolutely.

We will now prove yet another theorem relating to sequences satisfying condition
(L).

THEOREM. Let {n,} be a sequence satisfying condition (L) and f (x) be a function with
an integrable square. Then

Sp. (x) = f(x) almost everywhere as k — oo
Proof. Let
Qo

- + Y (a, cosnx + b,sinnx)

be the Fourier series of f(x), S,(x) and o0,(x) be its partial and Fejér sums. Since
0,(x) = f(x) as n > oo almost everywhere, then it is sufficient to prove that
S (x) — 0, (x) > 0 almost everywhere.

We will prove that

Y J [0n(X) = Sp(Pdx < + o0, (65.3")
k=1 —-=xn
then according to Lebesgue’s theorem (see Introductory Material, § 14) the series

3 [0n (%) — Sp @I,
k=1

will converge almost everywhere and therefore its general term will tend to zero.
Thus, it remains to prove the convergence of series (65.3"). As is known,

n

S,(x) — 0,(x) = m(a,, cosmx + b, sinmx).

Therefore due to Parseval’s equality

1 T
. f[a,,k(x) - Sp(0))Pdx = T 1)2 Z m? (a2 + b2).

Let us estimate the sum of the first p terms of series (65.3); we have

1
7

3 f (5000 = o dx = §, g 5 e + 80

< ¥ L S me@ . (65.4)
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SMOOTH FUNCTIONS

To shorten the working-out, we introduce the notation
2

v, = m*(a, + b})
‘We have
na r 1 np 1
Z U Z — + -+ Uy —5 . (65.5)
- k=np_1+1 n,

IR IS
k=1 Mk m=0 k=1 m=1 it m=2

But the sequence {n,} satisfies condition (L), and therefore {n:} does so, too (see
Introductory Material, § 4) and therefore

! C ! (65.6
ny < n?’ -6)

s

k
where Cis a constant. But then, supposing #, = 0, we find from (65.5) and (65.6) that
1
Z ZD <Cz(”nk 1 F o +v"k)——2_
k=1 k m=0 L
65.7)

Finally, it is clear from the definition of v,, that

v+ v, <N Z (@ + b2)
ne-1+1

Unge— 141 + -
) <c [fix)dx

Z va<cz Z(a +b2)—cZ(a + BZ)
K=t M miZo k=1 m_1+1
for any p. Hence the convergence of the series on the right-hand side of (65.4) follows

and this concludes the proof of the theorem
COROLLARY 2. From the statement just, proved, Kolmogorov’sté! theorem follows

If {n.} is a lacunary sequence and f(x)e L?, then
(x) = f(x) almost everywhere

66. Smooth functions
For the further investigation of the series which we considered in § 64 and alsoin
many other problems, it will be useful to understand the concept of a smooth function

DeriNITION. The function F(x) is said to be smooth at the point x, if
h—0. (66.1)

F(x + ) + F(x — h) — 2F(x) 40 as
h

Defining for brevity’s sake
AF = F(x + h) + F(x — h) — 2F(x)

we can say that the smoofhness of F(x) is characterized by the equality
AXF = o(h).

If equality (66.1) is fulfilled uniformly relative to x for some interval [a, b], then

we say that F(x) is uniformly smooth in this interval
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The word “smooth” is evidently introduced to represent the following idea: if
F(x)is smooth at some point, then this point cannot be angular. Indeed, if A2 F = o(h)
at the point x, then

F(x + b)) + F(x — h) — 2F(x) F(x + h) — F(x) F(x — h) — F(x)
h h B —h
= o(1),

i.e. if a derivative exists on the right of the point x, then a derivative also exists on the
left and they should be equal to one another. Moreover, if F(x) is smooth at some
point, then at the same point

DYF=DF=DF and D.F=D_F=DF,

where D*F and D~ F denote the upper right and upper left derivatives and DF the
upper derivative (when they are equal); similar notation is used for the lower deriv-
atives.
We note that if £ (x) is continuous at the point x or only “symmetrically continuous,”
i.e.
fxo+h) —flxo—h)—>0 as h-0,

then the primitive F(x) of f (x) satisfies the condition of smoothness at this point, since

h
F(xo + h) + F(xo — h) — 2F(xo) = [ [f(x0 + 1) = f(x0 — D] dt = o(h)
0

as h— 0.

However, smooth functions, in spite of their name, should not necessarily possess a
derivative almost everywhere; moreover, they can be devoid of a derivative almost
everywhere, as we will see later (see Chapter XI, § 4). However, the following theorem
holds:

THEOREM 1. If F(X) is continuous and smooth in some interval (a, b), then it possesses
a derivative F'(x) in a set E of the power of the continuum in any interval («, f) lying
within (a, b).

To prove this we first note that if the function F(x) possesses a maximum or mini-
mum at some point x, within the interval [a, b], then F’(x,) exists and equals zero.
In fact, we have

F(xo + h) + F(xo — h) — 2F(xo) F(xo + h) — F(xp) F(xo — h) — F(x,)
h = h * h '

(66.2)

But at the maximum (or minimum) point neither terms on the right-hand side of
(66.2) are positive for sufficiently small 1 > 0 (or correspondingly negative). Therefore
since their sum tends to zero, it follows that each of them tends to zero, and then
F’(x,) exists and equals zero.

Now let {«, f] be any interval within (a, b)) and L(x) = mx + nbe alinear function
coinciding with F(x) at x = « and x = . The difference g(x) = F(x) — L(x) is a
smooth function returning to zero at the end points « and f§. This means that g(x)
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has an absolute maximum or minimum at some point x, inside («, ). Therefore,
2'(xo) = 0, which means that F’(x,) exists and equals m. Hence, in particular, it
follows that for continuous and smooth functions the first mean value theorem hoids,
i.e.

Fby— F@=Mb—-aF¢), a<é<b.

We have proved that in any [«, §] within (a, b) there are points where F’(x) exists.
But it can be proved moreover that the set of these points is of the power of the
continuum. Indeed, let y be given such that « < y < f. A point X, is found in («, y)
where F’(x) exists and equals the tangent of the angle of inclination of the chord con-
necting the points («, F(«)) and (y, F(»)). If the inclinations corresponding to different
y are different, then the corresponding points x, are also different. But if the curve
y = F(x) is not a rectilinear interval in («, ) (if this were the case the theorem has
already been proved), then the magnitudes of the tangents of these slopes form the
interval, i.e. their set is of the power of the continuum and therefore the points of
differentiability of F(x) belong to a set with power of continuum in the whole interval.
The theorem is proved.

We will now give a definition for later use.

DermuTion. We say that the function f (x) possesses the property D in some set E, if
for any two «€ E and B e E and for any number C, contained between f(«) and £ (f),
a point y € E is found lying between « and f§ such that f(y) = C.

The letter D is derived from Darboux’s name, since he noticed that this property
was possessed not only by functions continuous in some interval but also by some
discontinuous functions; in particular, if £ (x) is an exact derivative, i.e. if F(x) exists
such that f(x) = F’(x) at every point of some interval, then it possesses property D
in that interval.

Let us prove a theorem.

THEOREM 2. If F(x) is continuous and smooth in some interval (a, b), then its derivative
F’(x) possesses property D in the set E of all the points where it exists.

This set E, as we can see from Theorem 1, is not only not empty but is of the
power of the continuum in every interval [«, §] within (a, b).

Letae E,fe E

A = F'(x), B= F'(f)

and let C be contained between 4 and B; for example, let us define 4 < C < B. We

should prove the existence of x¢, @« < xo < f, xo€ E, such that F'(x,) = C. If we

subtract Cx from F(x) then it is possible to assume C = 0, and then 4 < 0 < B.
Let us suppose for a fixed 4 that

F(x + h) — F(x)
g(x) = 7 .

We choose & such that 0 < & < b — f and moreover we suppose its range to be so
small that

F@) - F¢ -1 _

g@) <0, ¢ >0, ;



184 BASIC THEORY OF TRIGONOMETRIC SERIES

Since g(x) is continuous in [«, ], then in this interval [«, ] there are points where it
becomes zero. Let y be the furthest left of these points. From

F h) — F
() = (7+l)1 ) — 0

it follows that F(y + h) = F(y). If x, is a point in (y, ¥ + A), where F(x) reaches a
maximum or minimum, then F’(x,) = 0 = C. But since

FB) —FG - b
h

g@) <0 and g —h) = 0

because of the given choice of &, then
a<y<f—h

which means that (y,y + A) lies inside [x, f], therefore x; is also inside [e, f].
Moreover, since F’(x,) exists, then x, € E. Thus we have found a point x, € E, where
F'(xy) = C, and the proof is concluded.
We will apply the results obtained to the investigation of the behaviour of the sum
of the trigonometric series considered in § 64. First we will prove this theorem:
THEOREM 3. If the coefficients of the series

Qo .
5 + Y. (a,cosnx + b, sinnx) (66.3)
satisfy the condition
7(n) =kZIk(|ak| + 1bel) = o(m), (66.4)

then the sum of the integrated series

Fx) = %o—x +C— ® b,cosnx — a,sinnx 66.5)

n=1 n

is a function which is continuous and uniformly smooth in [0, 2x). The series (66.3) con-
verges at those points and only at those points where F' (x) exists and besides, if N = [1/h]
then the equality

F(x + h) = F(x — N
(x )2h =h _ [—a-"— + Z(akcoskx+bksinkx)]—>0 as h—0
k=1

2
(66.5)

occurs uniformly relative to x in [0, 2x].
In order to be able to speak correctly of the sum of an integrated series, it must be
proved that it converges. But because

(k) — v(k — 1)

|l + 16l = .

k=12,..),
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then the series (66.5) is majorized by the series

& la + el & k) — Tk — 1) 1
& -2 < 5w (- )
* 1
=O<k21k2)< + 00

(we applied Abel’s transformation here). Hence it is clear that series (66.5) converges
absolutely and uniformly. Let F(x) be its sum, therefore, it is continuous in [0, 2x].
Now in order to prove the theorem we suppose

A, = aicoskx + b, sinkx, B, = b,coskx — a,sinkx.
Then

F(x + h) — F(x — h) ¥ ( sinkh ® sinkh
2k = Sv@) =Y A\ 1) + X Ay
—P+Q.

Since in the neighbourhood of the point u = 0, we have

m"-%=m&<cwu
then
. 1
|P| < C|h|k§1(|akl + 5Dk < er(N) = o(l),
w|m+wﬁ | = ] |
121 < E <A k=§+1”‘ (k_ T 1)2)

® 1 1
i o () = e () =
and thus (66.2) is actually fulfilled, and moreover uniformly relative to x in [0, 2n].

Similarly we have

F(x + 2h) + F(x — 2h) — 2F(x) @ B sin2kh
= |1

4h & kh
N sin’kh 0 sin?kh
= B - +
kgl “ kh k=;v:+1 * kh
= Pl + Ql'

Since |sinu| < [u], then
[ Py] lhIZ | By k < IhlZ(lakl + 16 k = |l Ty = 0(1),

@ lag| + |b
10:1 < _; —"'—M=o(l),
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as we have already seen in estimating Q; therefore
F(x + 2h) + F(x — 2h) — 2F(x) = o(h),
i.e. F(x) is uniformly smooth in [0, 2x].
Finally, from (66.6) it is clear that series (66.3) converges at those points and only

at those points where a symmetrical derivative of F(x) exists, i.e.

i F(x + h) — F(x—h)

im

h>0 2h

and the sum S(x) of this series equals its symmetrical derivative.

But since for smooth functions where a symmetrical derivative exists, the normal
derivative also exists, then the latter part of the theorem is proved.

Note. The proved theorem is valid for lacunary series with coefficients tending to
zero, since for them the conditions of Theorem 3 (see § 65) are fulfilled.

COROLLARY 1. If for a trigonometric series the conditions of Theorem 3 are fulfilled,
then the series converges in a set of the power of the continuum in any interval (a, b)
€ [0, 27] and its sum S(x) possesses property D in a set of those points where it exists.

In particuiar, this property is possessed by any lacunary series, provided its co-
efficients tend to zero.

Indeed, by virtue of Theorem 3 S(x) exists where and only where F’(x) exists for
a smooth function F(x) defined by equality (66.5) and moreover S(x) = F’(x); then,
reference must be made to Theorem 2 and the proof is concluded.

COROLLARY 2. If the coefficients of a trigonometric series satisfy the conditions of
Theorem 3, then its sum cannot have points of discontinuity of the first kind.

Indeed, in the neighbourhood of a point of discontinuity property D would not be
fulfilled.

For the case when the coefficients satisfy a stronger requirement

a, =0 (%) , b,=o0 (ni) s (66.7)

we have already obtained a similar result (see § 42).

Note 1. From Theorem 3 it is possible to obtain a new proof of Fatou’s theorem
(see § 64) that a series with coefficients satisfying (66.7) converges almost everywhere.
Indeed, since from (66.7) it follows that )" (a2 + b2) < + oo, then the series F(x) is
a Fourier series. Therefore the sum F(x) of an integrated series is an absolutely con-
tinuous function (see § 40) and therefore, F’(x) exists almost everywhere. Then due
to Theorem 3, the series (66.3) converges almost everywhere.

Note 2.1f condition (66.4) only is fulfilled and not condition (66.7), then series (66.3)
can even diverge almost everywhere. We meet examples of this kind in § 3 of Chap-
ter XI.

§ 67. The Schwarz second derivative

The concept of a smooth function studied by us in § 66 will play a great part in
later work; but before turning to its application, we must first introduce yet another
new concept.
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DEerINITION. Let the function F(x) be defined in some neighbourhood of the point x;
if the limit of the expression
F(x+ h + F(x — h) — 2F(x)
h2
exists as A — 0, then it is said that F(x) possesses at the point x a Schwarz second
derivative and we write

(67.1)

D2F(x) = lim F(x + h) + F(x — h) — 2F(x) -

67.2
i i ©72

If the relation (67.1) does not tend to a limit as 4 — 0, then the values

h>0

and

D F(s) = tim FETR F(;;- B) — 2F(x)
h->0

are called respectively the upper and lower Schwarz derivatives at the point x.
We will show that if F(x) possesses a normal second derivative F”(x) at the point x,
then D2 F(x) exists and

D?>F(x) = F'(x). (67.3)

Indeed, if F”’(x) exists at the point x, then F’(x) is continuous at the point x and
therefore F’(x) is bounded in the neighbourhood of the point x. It is clear that

h
MF=F(x +h) + F(x —h) —2F(x) = [ [F/(x + 1) — F'(x — )ldt.  (67.4)
0

Hence

h
AiF " f 2t [F'(x +t) — F'(x — 1) ”
|—hT — F'"(x)| = Z— [ 2 - F (x)] dt
0
F H—F(x—1
cmax |DEFD=FE=0_ ppisl o as hoo,
1E(0, h) 2t

i.e. (67.3) is proved.
On the other hand it is clear that D?F(x) can exist without F/(x) existing; for
example, if F(x) is a continuous odd function, then at the point x = 0 we have

F(x + h) + F(x — h) — 2F(x) = F(h) + F(—h) = 0

for all A, which means that D?>F = 0 at x = 0, whilst F”(0) cannot exist, if we only
require that F(x) be continuous and odd.

Thus, the Schwarz second derivative is a direct generalization of the normal second
derivative.

We now note that, as in the case of the normal second derivative, we have: if x is
a maximum point and D? F(x) exists at it, then D*F(x) <0 and at a minimum
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D?F(x) > 0. This follows from the fact that 4,2 F(x) < 0 for sufficiently small 4 at
the maximum point and 4,2 F(x) > 0 at the minimum point.

The analogy continues still further. Thus the following theorem holds.

THEOREM. If F(x) is continuous in [a, b] and D*F(x) = 0 ina < x < b, then F(x)
is linear in this interval.

In order to prove this, take any ¢ > 0 and consider an auxiliary function

p(x) = F(x) — F()—M(x—a)+s(x—a)(x—b).

a

It is clear that @(a) = @(b) = 0. We will prove that it cannot assume positive values
in [a, b). Indeed, if this were the case, then because of the continuity of ¢(x) it would
attain its maximum somewhere within [a, 5], i.e. a point x, would be found in this
interval, where it would be known that D?¢(x,) < 0. But, on the other hand,

D?¢p(xo) = D*F(xo) + 2¢,

since the Schwarz second derivative of the sum equals the sum of the Schwarz second
derivatives, and the term e(x — @) (x — b) has the normal second derivative equal
to 2¢, which means that the Schwarz second derivative has exactly the same mag-
nitude.

But D?p(x,) < 0, D*>F(x,) = 0, and we obtain ¢ < 0 which contradicts the choice
of e.

Thus ¢(x) < 0 everywhere in [a, 8], i.e.

F(b) — F(a)
Fx) —F@ - —p -, k-a<etx-ab-xn< e(b — a)’.

If we were to put a minus sign in front of ¢ in the expression for ¢(x), we would
prove in exactly the same way that ¢(x) > 0 everywhere, i.e.

F(x) — F(a) — f@—_f;@(x —d>—ex—a)b—x) = —eb - a).
Therefore
|F(x) F(a) — f(*b)‘:g(‘a_) (x — a); <e(b — a)? 67.5)

But ¢ is quite arbitrary, therefore the left-hand side of the inequality (67.5) should be
equal to zero, whence

F(x) = F(a) + w (x — a),

which means that F(x) is linear. The theorem has been proved.
We will now apply the concept of the Schwarz second derivative to a method of
summation of trigonometric series.
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§ 68. Riemann’s method of summation

Let us consider the trigonometric series

%3 + Y (@, cosnx + b, sinnx), (68.1)
n=1

the coefficients of which tend to zero (or are only bounded). Then, integrating it
twice term-by-term, we obtain

a,cosnx + b, s1nnx

%o 2 3
Itk Cx+ D ; 2
It is clear that this series converges absolutely and uniformly (because a, and b, are

bounded); let us denote its sum by F(x). It is a continuous function which we will
name the Riemann function for the trigonometric series (68.1). Thus

a > a, X + b, sin
F() = 7%+ Cx+D =Y A iy (68.2)
n=1

n

We assume that at some point x, the function F(x) possesses a Schwarz derivative
D? F(x,). Then we can say that the series (68.1) is summable at the point x, by Riemann’s
method and its Riemann sum equals D2 F(x,).

In order to verify this statement, we will prove Riemann’s theorem:

THEOREM 1. If a trigonometric series with coefficients tending to zero converges at
a point x, to a value S, then it is summable at this point by Riemann’s method to the
same value S.

To prove this, we note first of all that it immediately follows from formula (68.2)
after elementary trigonometric transformations that

F(xo + 2h) + F(xo — 2h) — 2F(xo)
e

® innh\?2
I Y (a,cosnxo + b, sinnx,) (ﬂ) . (68.3)
2 e nh

For brevity’s sake we assume
A, = a,cosnx, + b, sinnx,.

From formula (68.3) it is immediately evident that for the summability of series (68.1)
by Riemann’s method at the point x, to a value S it is necessary and sufficient that

i [A 4, (sinnh 2 _ 5
m o+2 nh)]— .

h->0

Thus, Theorem 1 will only be proved when we prove Theorem 2:
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e o]
THEOREM 2. Let the series Ay + Z A, converge and S be its sum; then

n=1

lim [Ao + Z 4, (Sizzh)z] = 5. (68.4)

h->0

We will now prove this latter assertion. Let us suppose

Y A

k=n+1
From the convergence of the series Y A4, it follows that for any ¢ > 0 it is possible
to find N such that

|[R,) <& at n > N. (68.5)
We now write

sinnh sinnh © sinnh\?
A0+ZA ( — ) —A0+2A ( v ) +NZ+:1A,,(A—nh ) (68.6)
. sinnh ]
If nis fixed and A4 — 0, then A 1, and therefore for sufficiently small 4

N sinnh)\ 2
Ao+ZA” ( nh ) —(A0+A1+"'+AN) < E. (68.7)
n=1
Moreover,
| N ‘
S — Y A =|Ryl<e (68.8)
=
due to (68.5), and therefore from (68.7) and (68.8)
sinnh
‘A0+ZA ( W) — S| < 2, (68.9)

if only 4 becomes sufficiently small.

Thus in order to prove (68.4) it is sufficient to prove that the last term on the right-
hand side of formula (68.6) can be made as small as desired as 4 — 0. But we have
A, = R,_; — R,, which means that

ZA (smnh) Z(R,._ _R) (Snllt_,;lh)z

N-+1
- Y -5 [ -
(68.10)

(Abel’s transformation used here is valid, since as n — oo and # being any value
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sinnh\? ) )
" (71—) — 0). But by virtue of (68.5) we obtain from (68.10)
® sinnh\? © | /sinnh\2 (sin(n + 1)h\?
PR < —
NZ+1A"(nh) 8+8N;1(nh) ((n+1)h)

(+Dh

® d (sint\?
=&+ —~—) dt
¢ 8N§1 f dt ( t )

nh
e 0
d (sint\? J‘ (smt
< - -
8+8f dt(t) dt<e+¢ ) dt
N+ R (68.11)
and it remains to prove that the last integral is finite, then the whole of the right-

hand side of (68.11) is less than Ce, where C is a constant, and since this is true for
any h, then it is also true as 2 — 0. Since

d (sint 2 sint tcost — sint
drt \ ¢ - t t? ’

then in the neighbourhood of ¢ = 0 the function under the integral sign is bounded,
moreover, as { — co we have
t+1 1
<?2 3 =0 (7{) .

| d (sint 2
a7
and therefore the integral in formula (68.11) does indeed have meaning and the proof

is concluded.

Note. In the proof of Theorem 2, we considered the series 2 A, to be a numerical
n=0
series, without being concerned with the fact that it was obtained from a given tri-

o0
gonometric series. It can be said in general that the numerical series Y. u, is summable
by Riemann’s method to the value S, if n=0

x  (sinnh\?
i [uo+ E (S70) ] -

In this case Theorem 2 is a statement that Riemann’s method is regular.
Now it must be said that the functional series Y u,(x) is summable by Riemann’s
method uniformly to S(x) in the set E, if

lim [uo(x) + Z 1, (%) (szh) ] = S(x)

n—>®©

uniformly relative to x in E.

From the proof of Theorem 2 it is immediately evident that the uniform con-
vergence of Y u,(x) in E to S(x) implies its uniform summability by Riemann’s
method to S(x) in E.

This note will be used essentially in § 71.
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We will now return to the study of the Riemann function F(x) and will prove yet
another theorem due to Riemann.
THEOREM 3. If the coefficients of a trigonometric series tend to zero, then its Riemann
Sfunction is uniformly smooth in [ — =, =].
This theorem follows quite quickly from the results of § 66. Indeed, if we integrate
the series
a20 + ) (a, cosnx + b, sinnx), (68.12)

where a, — 0, b, » 0, then we obtain a series with coefficients of order o(1/n)

bn = CGn i
_21 x4 C— Z cosnx . a,sinnx ) (6813)

Integrating the series (68.13), we obtain according to the theorem of § 66 a series, the
sum of which should be uniformly smooth. But this sum F(x) is the sum of a series
obtained by the double successive integration of (68.12), and therefore it is also the
Riemann function for the series (68.12) and the theorem is proved.

We will use this theorem in § 70 but first we will consider the application of Rie-
mann’s method to Fourier series.

§ 69. Application of Riemann’s method of summation to Fourier series

Riemann’s method, as well as the methods of Fejér and Abel-Poisson, when applied
to Fourier series, gives the following result:

THEOREM. The Fourier series for any summable function f(x) is summable by Rie-
mann’s method almost everywhere to this function.

Indeed, let

f(x) ~ ;—0 + Y (a,cosnx + b, sinnx). (69.1)
n=1

We have a,— 0 and b, — 0, since these are Fourier coefficients. According to the
theorem of § 40, the Fourier series can be integrated term by term; in other words, if

F(x) = [ f@t)dt,

then

® b,cosnx — a,sinnx
F(x) = + —x - Z " , (69.2)

whilst because of the absolute continuity of F(x) the series (69.2) converges every-
where to it and even uniformly in [— 7, &]. Moreover, if @(x) is an indefinite integral
of F(x), then

a,cosnx+ b, sinnx

D(x) = —x + Cx + D i

n=1 n
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and therefore the Riemann function @(x) for the series (69.1) is the result of the
double successive integration of £ (x). But since F(x) is continuous, then @' (x) = F(x)
at every point; moreover F’'(x) = f(x) almost everywhere; thus &”(x) = f(x) al-
most everywhere but since D2@(x) = @”(x) then, where @ (x) exists (§ 67), D*D(x)
= f(x) almost everywhere, and therefore the series (69.1) is summable almost every-
where to f(x) by Riemann’s method.

The theorem is proved.

We now begin to apply Riemann’s method to general trigonometric series and
especially to the very important question of the uniqueness of the expansion of a
function into a trigonometric series.

§ 70. Cantor’s theorem of uniqueness

Using Riemann’s method of summation, we can answer the following important
question; can two different trigonometric series exist which converge at every point
to the same function f(x)? The answer to this question is in the negative. In order to
prove this, we first prove the following important theorem:

CANTOR’S!!) THEOREM. If the trigonometric series

Qo .
-t > (@, cosnx + b, sinnx) (70.1)
converges to zero at every point x of [0, 2 7], then all its coefficients equal zero.

According to Cantor’s Theorem, the coefficients of the series (70.1) tend to zero
(this followsnot from the Cantor-Lebesgue theorem, but from Cantor’sown theorem —
see § 62, note). If we construct the Riemann function F(x) for series (70.1), it is con-
tinuous along the whole infinite straight line. According to the theorem in § 68, the
series (70.1) should be summable to zero at every point, i.e.

D*F(x) =0 —n<x<m.
Then according to the theorem of § 67 we have
F(x) = Ax + B. (70.2)

But on the other hand since F(x) is the Riemann function for the series (70.1), then

a ® a,cosnx + b, sin
Fe) =252 4 cx+D— alull Sy (70.3)
4 n=1 n
From (70.2) and (70.3) we obtain
a ® ag,cosnx + b,sinnx
Ton + A;x + B, =n§1 " s (70.4)

where A; and B, are new constants. But the right-hand side of (70.4) has a period 2 =,
which means that the same applies to the left-hand side and this is possible only for

@ =0 and A, =0. (70.5)
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We now have
a,cosnx + b,sinnx

i . (70.6)

n?

Series (70.6) converges uniformly; therefore (see § 12) its coefficients are the Fourier
coefficients for its sum, but that is a constant number B, and therefore

a, b,
F=7Z—=O (n=1,2,.--),
whence
a,=5b,=0 (n=1,2,..). (70.7)

From (70.5) and (70.7) it follows that series (70.6) has all its coefficients equal to
zero and thus Cantor’s theorem is proved. He immediately generalized this theorem,
by proving the following statement:

If a trigonometric series converges to zero everywhere apart, perhaps, from a finite
number of points, then all its coefficients equal zero.

In fact, arguing in exactly the same way as in the proof of the preceding theorem,
we see that the series under consideration has coefficients tending to zero and its
Riemann function F(x) should be linear in every interval where the series converges
to zero, since then D? F(x) = 0. But F(x) should be smooth by virtue of Theorem 3
of § 68. Therefore it cannot possess angular points. Consequently it cannot consist
of different rectilinear intervals and should be simply linear. But if this is so, then the
proof is concluded as in the previous theorem, i.e. we prove that all the coefficients
of the series equal zero.

Note. Cantor’s theorem can be expressed in the following more general form: if a
trigonometric series with coefficients tending to zero is summable to zero by Riemann’s
method everywhere apart, perhaps, from a finite number of points, then all its coefficients
equal zero.

Indeed, in proving the theorem we only use the facts that the coefficients of the
series tend to zero and D? F(x) = 0 everywhere apart, perhaps, from a finite number
of points.

COROLLARY. Let f(x) be a function with period 2m, which is finite at every point of
[0, 27). Then, there do not exist two different trigonometric series, each of which con-
verges to f{x) everywhere in [0, 2] apart, perhaps, from a finite number of points.

Indeed, we will suppose that two such trigonometric series do exist; then their
difference would be the series

Qo

5 Z a,cosnx + b, sinnx), (70.8)

in which not all the coefficients equal zero, but it converges to zero everywhere apart,
perhaps, from a finite number of points. However, we have already seen that this is
impossible.

Here, it is true, the requirement of convergence can be replaced by summability
by the Riemann method (but in this case it is previously required that the coefficients
tend to zero).
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The theorem on the uniqueness of the expansion of a function into a trigonometric
series permits considerable generalizations. We will devote Chapter XIV to this
problem; here we will confine ourselves to formulating the most important results.
For this purpose we introduce a definition.

DerFiNiTION. The set E, lying in [—x, z], is known as an M-set, if there exists a
trigonometric series

Qo

0
-t Y (a,cosnx + b, sinnx),
n=1

in which not all the coefficients equal zero and which converges to zero everywhere
in [—, 7] outside the set E.

If the set E is not an M-set, then we call it a U-sett.

Using this definition, we can now formulate the two preceding theorems thus; if
E is an empty or finite set, then it is a U-set.

Cantor himself proved that any reducible set (i.e. one for which the derived set is
finite or denumerable) is again a U-set. Subsequently, Young!!! proved that any de-
numerable set is a U-set (see § 5, Chapter XIV).

On the other hand, it is easily proved that any set E, mE > 0, is an M-set. In fact
Iet us take a perfect set Pe E, mP > 0, and suppose that f(x) = lin Pand f(x) = 0
outside P. From the principle of localization (see § 33) the series o(f) converges to
zero in every interval adjoining P and therefore everywhere outside E. Thus there
exists a trigonometric series convergent to zero everywhere outside P but with co-
efficients differing from zero (for example

2
ay = -j;ff(x)dx = -:;mP).
0

Consequently, E is an M-set.

For a long time it was supposed that, on the contrary, any set of measure zero
(not only finite and denumerable) should be a U-set. This hypothesis was refuted by
Men’shovI!), who set up the first example of a perfect M-set of measure zero (see
the proof in § 12, Chapter XIV).

§ 71. Riemann’s principle of localization for general trigonometric series

The function F(x) introduced by Riemann plays an important role not only in
the question of the uniqueness of the expansion of a function into a trigonometric
series but also in the examination of its convergence or divergence.

We recall that the following theorem was proved for Fourier series (see § 33): the
convergence or divergence of a series o(f) at a point x depends only on the behaviour
of the function f{x) in the neighbourhood of the point x.

We will now suppose that we are concerned with an arbitrary trigonometric series,
not a Fourier series. It seems that it is then possible to judge its convergence by

1 From the definition, it immediately follows that any part of a U-set is a U-set: on the other
hand, a set containing an M-set is itself an M-set.
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studying its Riemann function. Thus we have a theorem, analogous to the preceding
theorem, which can be expressed in this form:

For any trigonometric series with coefficients tending to zero, the convergence or
divergence of the series at some point x depends only on the behaviour of the Riemann
Junction F(x) in the neighbourhood of the point x.

This somewhat indistinct formulation will be stated more exactly later (see p. 200).
Riemann proved this statement thus: he constructed a function A(x), equal to unity
in [«, B], equal to zero outside (a, b) and possessing continuous derivatives up to the
fourth order inclusive in [0, 2x]. After this, he proved that the difference

b
n 2

1 d
20 4 3 (@ coskx + by sinkx) — —fF(t)a(t) LDt —xdt (L1
2 k=1 T dt

tends to zero uniformly in [«, f] and from this he drew the necessary conclusion.

At the present time the idea of introducing a function A(x) has been completely
maintained but the proof of Riemann’s theorem is usually carried out using the theory
of the formal multiplication of seriest; by the way, this theory also gives many other
useful results which we will prove in Chapter XIV.

Thus, we begin with the concept of the formal product of two trigonometric series.
For simplicity of exposition we will write the trigonometric series in its complex form

n=-+o
Z cneinx (c—n = En)

H=—a®

Let us consider two trigonometric series

n=-+o00
Y cpet™ (71.2)
and
n=-+4-o .
Y. yae™. (71.3)

Let us call their formal product the series

n=--+4ow
Z K, e, (71.4)
where
p=+w
K, = Z Co¥Vnp (71.5)
p=—0

on the supposition that all the series (71.5), defining K, converge (n = 0, +1,£2,...).
In all that follows we will be concerned with the case when Y. |y,] < + c0. Under
these conditions series (71.3) converges absolutely and uniformly in [—#, 7] and is

1 This theorem is due to Rajchman (see Rajchman!? and also Zygmundt!2),
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the Fourier series of some function A(x). As regards the series (71.2), it can be any
seriest providing that
;>0 as n—o 4+ 0.

Let us prove the following two lemmas due to Rajchman.

LemMA 1. If ¢, > 0 as n — + oo and if the series Y. |y,| converges, then all K, de-
fined by formula (71.5) have meaning and K, - O asn - + oo,

Indeed, if M = max |c,|, thenasn — +

o0

2
(Kl KM Y Iynpl + max [c] 3, [7ay]
p

=S

o0 g=+®©
<M Y v + max |c,| Y, Iy, >0 as n-o+oo

q=n [7] > —;’— ==
and similarly we can carry out the proof for n - — c0. Lemma 1 is proved.
It is said that series (71.3) converges rapidly to S, if it converges to S and if the series

I‘o +I'1 + oo+ I‘" + -
converges, where

Fn = Z|Yk|
k=n

Thus, for example, if the coefficients of series (71.3) are of order 0(1/n3), then
I, = 0(1/n?) and, therefore, series (71.3) converges rapidly. Subsequently we will
frequently use the series o (4) for the series (71.3), where A(x) is a function possessing
three continuous derivatives. Then the coefficients of the series o(4) will be of order
0(1/n3) (see § 24) and o(4) will converge rapidly to A(x).

We will now turn to proving the following lemma.

Lemma 2. If ¢, — 0 as n — + oo and series (71.3) converges rapidly to zero in some
set E, then the formal product (71.4) converges to zero uniformly in the set E.

1 It is appropriate to note here that if series (71.2) is the Fourier series of some function f(x),
then the formal product becomes the Fourier series of f (x) A(x). Indeed, if we denote by K, the
Fourier coefficients of f(x) A(x), then

T T
1 int 3 1 q=-+ow
_ —in _ —int iqt
K=o | fOe™i@di=— | f®)e q=2_que at
—_—n —n
T
g=+w q g=-+o0 p=+1c©
= Z T f@)ed @Dt g = Z CogVq = Z Co¥Vnp-
4=—o g=—o p=—
-

Here term-by-term integration was valid, since we had assumed that Z {¥n] < + 00, and therefore
series a(4) converges uniformly.
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Indeed, let xo€ E and
Ri(x) = 3 pe™.
We have fork > 0 "t

0 - 00
[R_i(x0)| = |3 pne™=o —‘ Y 7ae™ | = [Rey (X0} <Tipr  (71.6)
y | ~k+D
which means that the series
k=4
Z [ R ()]
converges uniformly for xe E.
Then
n=-4m n=-+m p=+® p=-+w
0uxo) = 3 Kae™o =3 e S G0y = 3 e S gt
n=—m n=—m p=—00 p=—0o0 n=-—m
p=+o0
Z C e:pxo Z }" eiqxo
p=—o g=—m—p
p=+w p=+w
Z c eiprR m_p(xo) - Z c elp OR _p+1(x0)
P=—w pP=—
Therefore

p=+w p=+®
IQm(xO)I < z Icpl IR—m-p(xo)I + Z Icpl |Rm—p—1 (xO)l,
p=—0 p=—w
and, taking into account the inequality (71.6), by the same arguments as in Lemma 1,
we prove that Q,,(x,) — 0as m — oo and moreover uniformly for x,€ E, since the
estimate of R, (x,) in terms of I'; or I'y,, is valid for all xe E.
From these two lemmas we can deduce a theorem:
THEOREM 1. If the series (71.3) converges rapidly to some function A(x) and ¢, — 0,
then the series

n=-+4 o n=-+0o0
Y K, = A(x) ¢} e = Z K e — A(x) Z c e’ (71.7)
converges uniformly to zero in [—x, 7].
In order to prove this we suppose that

y>0k =%Y0 — ﬂ'(x)a
Ve =y, for n#0

and set up the formal product Y K;fe'® of the series Y. ¢,e™ and ) yx¥e™. It is true
that in the latter series y¢& is not a constant value, but it is not difficult to show that
the proof of Lemma 2 would not be changed, if we supposed y, to be a bounded
function of x, which occurs in our example. Therefore we can apply Lemma 2, since
the series )y €™ converges rapidly to zero in [—m, #] and we find that ) K;fe™~
converges rapidly to zero uniformly in [~ 7, =]. But

p=+w

Ki=3 ¢k, =clyo — A+ Y vy = Ko — 2(x) cu,

p=—o0 pP¥#n
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and therefore
Y K, — A(x) Y. c,et™

converges to zero uniformly in [— s, #] and Theorem 1 is proved.

Combining Lemma 2 and Theorem 1, we can express a proposition which we will
use later. '

COROLLARY 1. Let A(x) be a function for which the Fourier series converges rapidly
and Y’ c,e"™ a series whose coefficients ¢, —» 0 as n —> + co. Then the formal product
of the series ), c,e'™ and the Fourier series for A(x) converges to zero everywhere where
A(x) = O (even if the series ), c,e™ diverges). At those points where A(x) # 0, it
diverges if the series Y. c,e'™ diverges and it converges to A(x,) S(xo) if Y, c,e™ con-
verges to S(xo).

Note 1. We will remark that this statement can be strengthened. Thus, if we suppose
that A(x) # 0 at some point then

1im Q,,(xo) = A(xo) lim S, (%),
at A(xg) >0
lim @, (xo0) = A(xo) lim.S,(xo)
and
lim @,(x0) = 4(xo) lim S, (xo),
at A(xg) < 0.
lim Qn(xo) = }*(xo) 1ilnSn(xo)

This follows immediately from an examination of the partial sums of the series
Z Kneinx _ l(x) Z cneinx’

which, as we have seen, converges to zero. Therefore, in particular, if lim | S,(x,)]
= + o0, then lim |Q,(x,)| = + oo also.

This result will be used specifically in Chapter XIV.

From Theorem 1 it also follows immediately that:

COROLLARY 2. If the Fourier series for A(x) converges rapidly and Y, c,e™ converges
uniformly in E to S(x), then the formal product converges uniformly in E to A(x) S(x).
Ifin a set F we have |A(x)| > a > 0, then the uniform convergence of a formal product
in E implies the uniform convergence of Y. c,e"™ in it.

Note 2. In Corollaries 1 and 2 the words “convergence” or “uniform convergence”
can be replaced by “summability” or “uniform summability” by the Riemann method.
In fact, according to Theorem 1,

S IK, — A() o] e

converges to zero uniformly in [— 7, #]. By virtue of the note to Theorem 2 of § 68
it follows that this series is uniformly summable to zero by the Riemann method in
[— =, 7], and this means that the difference of the series

Y K,e™ and A(x) ) c,e™
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is uniformly summable to zero by the Riemann method in [— 7, ], whence the re-
quired result immediately follows.

We can now prove the following important theorem:

THEOREM 2. If a trigonometric series with coefficients tending to zero is summable by
the Riemann method to zero at every point of some interval (a, b), then it converges to
zero at every point of (a, b) and moreover uniformly in any interval lying entirely within
{a, b).

Let A(x) = 1 in [, f], A(x) = O outside (a, b) and A(x) be interpolated between
[a, «] and [b, f] as desired, provided it possesses continuous derivatives up to the

A(x)

!
|

|
| ] I L X
0 a o A b 2z

FiG. 14

hird order inclusive (see Fig. 14). We have already said that under these conditions
he series (1) converges rapidly. Let

o(d) =, ynem™.

‘We will set up the formal product (71.4) of the given series and the series 6(4). Since
A(x) = 0 outside (a, b), then by virtue of Corollary 1, the series (71.4) converges to
zero outside (a, b), which means that it is summable outside (a, b) to zero by the
Riemann method. Moreover, by virtue of Corollary 1 and Note 2 concerning sum-
mability, series (71.4) is summable to zero by the Riemann method at every point of
{a, b), because we have assumed that this holds for series (71.2) in (a, b). Thus, series
(71.4) is summable by the Riemann method to zero at every point in [—x, n]. If
this is so, then according to the theorem of § 70 (see its note), it possesses all coef-
ficients equal to zero. But according to Theorem 1 of this section the series

Z Kneinx — Z.(X) z C”einx

converges to zero uniformly in [— 7, z]. If all k£, = 0, then this means that

AX) Y cpet™

converges uniformly to zero in [—,n]. But A(x) = 1in [«, f], therefore ) c,e'™
converges uniformly to zero in [«, f], and the proof of Theorem 2 is concluded.

Now we will express in an exact form and prove a theorem which was formulated
to some extent at the beginning of this section. So we have the following theorem which
is known as Riemann’s principle of localization.

RIEMANN’s PRINCIPLE OF LOCALIZATION. Let F;(x) and F,(x) be Riemann functions
Jor two trigonometric series with coefficients tending to zero, if these functions are equal
in some interval (a, b) or, perhaps, if their difference is a linear function in (a, b), then
the difference of the given trigonometric series is a series convergent to zero everywhere
in (a, b) and moreover, uniformly in any interval [«, 8] lying entirely within (a, b).
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To prove the theorem, let us consider two trigonometric series with coefficients
tending to zero. Let (71.2) be the difference of these series, and F; (x) and F, (x) their
Riemann functions. Then, according to the condition of the Riemann theorem, the
sum F(x) for series (71.2) is a linear function in (a, b). If this is so,

D?F(x) =0 in (a,d)

then, consequently, series (71. 2) is summable to zero by the Riemann method at
every point of the interval (a, b) and Theorem 2 can be applied.

From Riemann’s principle of localization the truth of the statement made at the
beginning of the section follows immediately, the convergence or divergence of a series
with coefficients tending to zero depends only on the behaviour of the Riemann
function.

Indeed, if for two series with coefficients tending to zero, we have F, (x) = F,(x)in
(a, b), then the convergence or divergence of both series at any point x€ (a, b) can
only occur simultaneously (and also if they converge, they possess the same sum).
It is in this sense that it should be understood that convergence or divergence depends
only on the behaviour of the Riemann function.

It should be noted that the general Riemann principle of localization proved here
includes, as a particular case, Riemann’s principle of localization for Fourier series
(see § 33). Indeed, if the two given series are Fourier series for f; (x) and f,(x), then
the functions F;(x) and F,(x) are obtained as a result of the double successive inte-
gration of f;(x) and f;(x) (see § 70), and, therefore, if f; (x) = f,(x) in (a, b), then
Fi(x) — F,(x) will be linear in this interval, and if the general principle of localization
has already been proved, then it can be'stated that o(f;) — o(f3) converges to zero in
(a, b) everywhere and moreover uniformly in [z, f], lying within (a, b).

In Chapter XIV we shall see the part played by Riemann’s principle of localization
which has been established here.

§ 72. du Bois-Reymond’s theorem

Let f(x) be a function which is finite at every point of [~ 7, #]. We have already
seen (see § 70) that there cannot exist two different trigonometric series converging
to it everywhere in [— z, z]. But if one such series exists, ought it to be its Fourier
series?

This question, of course, only has meaning for summable f(x), since otherwise it
would be simply impossible to write down the Fourier series (we always mean Fourier—
Lebesgue series).

Let us note that the convergence of a trigonometric series at every point does not in
any way imply that it is a Fourier series. Indeed, for example, the series

® sinnx

ne2 lnn

converges everywhere, since this is a sine series with monotonically decreasing co-
efficients (see § 30); however, it is not a Fourier series (see § 40).

8 Baryl
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Therefore it is appropriate to pose the question thus: Let f(x) be finite at every
point and summable. Let there exist a trigonometric series converging to it everywhere
in [—z, «]. Could this series be its Fourier series?

Here we can give a positive answer to this question in the case when f(x) is a
bounded function; it was in this form that the theorem was proved by Lebesgue who
generalized the initial result obtained by du Bois-Reymond.} But before proving this
theorem, we should demonstrate the validity of the following lemma:

LeMMA. If F(x) is continuous in [a, b] and

m<D*F(x) <M in (a,b),
then for any xo and h such that a < x; — 2h < xo + 2h < b, we have
F - -
m < (xo + 2h) + F(xq — 2h) — 2F(x,) <M
442
To prove this, we consider the auxiliary function
F(xq + 2h) — F(xo — 2h)
4h
(x — x0)*> F(xo + 2h) + F(xo — 2h) — 2F(x0)
LA an '

It is clear that ¥ (x) is a polynomial of the second degree in x, whilst
Y(xe + 2h) = F(xo + 2h), Y (x,) = F(xo) and W(x, — 2h) = F(x, — 2h),

i.e., the difference

Y (x) = F(xo) + (x — xo)

r(x) = F(x) - ¥Y(x)

becomes zero at x = x, — 24, xo and xo + 2h. Moreover, r(x) is continuous in
[a, 6] and F(xo + 2h) + F(xo — 2h) — 2F(xo)

4h? )

Since r(x) possesses a minimum and maximum somewhere inside (x, — 2h,
Xo + 2h), let them be the points x, and x,, and at them it is known that D2r(x;) > 0
and D?r(x,) <0, so it is immediately clear that

F(xo + 2h) + F(xo — 2H) — 2F(x0)
4n

D?*r(x) = D*F(x) —

D?*F(x,) <

< D*F(x,),

which proves the validity of the lemma.
We can now prove the theorem:
THE bU Bols-REYMOND-LEBESGUE THEOREM: If f(x) is bounded in [ — 7, 7t} and there
exists a trigonometric series
ao

2

converging to it everywhere in this interval, then this series is its Fourier series.

+ Y (a, cosnx + b, sinnx), (72.1)
n=1

1 du Bois-Reymond!?1 considered only the case of bounded functions, integrable in the Riemann
sense.
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We will first note that from the convergence of series (72.1) it follows that @, —» 0
and b, — 0 (see § 62). Therefore, it is possible to construct a Riemann function and
to obtain, as in § 68

F(xo + 2H) + F(xo — 2h) — 2F(xo)
4

. h 2
= 020 -+ Z(a,. cosnxg + b,sinnx,) (SIZZ ) . (72.2)
n=1

From Riemann’s theorem (see § 68, Theorem 1) we have at every point
D?F(x) = f(x). (72.3)
But f(x) is given as bounded; which means that by the preceding lemma

F(x + 2h) + F(x — 2h) — 2F(%)
4n?

<M, (72.4)

where M is a constant (and this is for any 4 and any x, — < x < #). We also note
that f(x), as the sum of an everywhere convergent series of continuous functions, is
measurable, which means that being measurable and bounded, it is summable.

From the uniform convergence of (72.2) it follows that it is the Fourier series of the
function on the left-hand side of the equality, i.e.

cosnxdx (72.5)

(smnh 1 f F(x + 2k) + F(x — 2H) — 2F(x)
G ) % 4h?

and similarly

innh\2 1 “F h F(x — 2h) — 2F
bu(SInn ) =;f er 2y Pr 20 Z(X)Sin"xdx- (72.6)

. nh 4h?
But
F 2h F(x — 2h) — 2F
D# P = tim T 2 & F(x = 28) — 2FG)
B0 4h

Therefore by virtue of (72.3)

lim F(x + 2h) + F(x2—~ 2h) — 2F(x) - 1.
-0 4h

If we now note that due to (72.4) the expressions under the integral sign in the
integrals (72.5) and (72.6) are bounded at any x and A by the same value M (this is
true for any n), then it is possible to carry out the passage to the limit under the inte-
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gral sign, and therefore

. (sinnh)2
a, = limag, |——
>0 nh

o fF(x + 2h) + F(x — 2h) — 2F(%)
= lim — 42

h>0 T

cosnxdx

—J

1 k13
= ff(x) cosnx dx

and similarly

1 T
b, = - ff(x) sinnx dx,

and this is what it was required to be proved.

Note. We assumed f(x) to be bounded but the given theorem permits considerable
generalization. It need not require convergence of the series at every point of [0, 27x]
(see Chapter X1V, § 4).

§ 73. Problems

1. The series

D18

s o]
cosnx and ) cos2"x
1 n=1

do not possess points of convergence, if the series
o
(a) ) sinnx
n=1
converges only at x = 0 (mod =), whilst the series
(2]
(b) 3 sin2"x
n=1

possesses an infinite (but denumerable) set of points of convergence in (0, 7).
The set of points of normal convergence of series (b) coincides with the set of
points of its absolute convergence. w
[In considering series (b), represent the points x in the form x = 7y = @ ) §,/2*
n=1

where §, = 0 or 1. Consider the cases when y is a binary rational number and when y
is not a binary rational number.]
2. The set E < (— o0, + o) of all the points of convergence of the series

nsin2"'x

s
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has the power of the continuum in any interval (a, b) where a < b (although m E = 0).
This is also true for the series

[v o]
Y ncos2"'x.
n=1

© .
[Consider the set of points E = [] E,, where E, = {— o0 < x < o0: |sin2"'x
10

n=
< 1))
3. If the trigonometric series
0

5 + Z a, cosnx + b, sinnx) (73.1)

converges in measure in some set £ where mE > 0, then
lim \/z2 1 32 = 0.
n-»o

[Refer to the proof of the Cantor-Lebesgue theorem in § 62.]

4. Consider a measurable function ¢ (x) which is 2z-periodic and not equal to a
constant. Then for any «, and 4, where (4,) = o0 as n — o0, the sequence of functions
{p@,x — a,)} diverges almost everywhere in (— o0, ).

5. If functions g(x) € C(0, 2x) and f(x) € C(0, 2x) exist such that g(x) = f(x) for
x € [l1, 2], the Fourier series of g(x) and f(x) are however not uniformly equi-
convergent in the interval (1, 2).

6. The absolute convergence of trigonometric series is not a local property. There
exists a 2z-periodic absolutely-continuous function f(x), the Fourier series of which
is not absolutely convergent at any point x € [1, 2], although f(x) = 0 for x €[1, 2].

7. There exists a trigonometric series of the the form (73.1) which diverges every-
where in (— o0, o) and get this series is summable by the Abel-Poisson method for
all x e (— oo, ).

[Take the series Z nsinnx and add to it a Fourier series (of a continuous function)
=1

which diverges only at the points x = O (modm).]
8. Let a, |0 and

fx) = z a, sinnx. (73.2)

n=1

Then
(a) iflim f(x) = 0, a, = o(1/n) and the series (73.2) converges uniformly in [0, =];

x>0

(b) if lim f(x) = A, where A is a finite number, a, = O(1/n) and

x> +0 .
. k=12...
ln;1a" sinnx| < D for all {xe [0, ]

where D is a finite number.
9. Let a,]0

and fx = i a, COSHnX. (73.3)
n=1
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Then
(a) if lim f(x) = 4, where A is a finite number,
x->-+0
a, ®
A= > +n:21 a,

and the series (73.3) converges absolutely in (— o0, 0);
(b) if hm f (x) = + o, f(x) € L(0, 27) and the series (73.3) is a Fourier series;

(c) if the functlon f(x) is non-integrable in [0, x], then
—o0 = lim f(x) < hmf(x)

x> +0 x->+0
10. (i) If a 2z-periodic function f(x) € Lip«, then
O(1/n® for O0<a<1
O ((logn)/n) for o =1,

where o,(x, f) are the arithmetic means of the partial sums of the Fourier series of the
function f. The estimate (73.4) cannot be bettered.

ww—%mﬂm={ (73.4)

S.N. BERNSTEIN
[The estimate (73.4) follows from the fact that (see § 47)
1/n

1
If = oulle <— f G+ 0D+ — 80— 2f)] K, () de

Ilf(x +H+fx—0 - 2f(x)ll
n(n + 1) 2
1/n

If we take the function £, (x) € Lipa such that f,(x) = |x|* where [x| < 1, then we
prove that the estimate (73.4) cannot be bettered with respect to order.]
(i) If f(x) e C(0, 27), then

1769 = oute. Nl = 0 [ 3 B0,

S.B. STECHKIN

11. Consider a 2m-periodic function f(x) = x sin(n/x) where 0 < x < 1 and
f(x)=0for1 <x <2m. Then

”f(X) - O'n(xsf)”c = 0(1/\/5)

and this estimate cannot be bettered with respect to order.

[The modulus of continuity w(3, f) = 0(8"?))and w (4, f) # 0(8'?). The fact that
the estimate cannot be bettered follows from Stechkin’s result's? (see also § 7 ofthe
Appendix).]

12. For every « € (0, 1) there exists a function fe Lipa such that
lim #*|f(x) — o,(x,f)| > O for nearly all x e (— o0, + ).

A0
For « = 1, a statement of this type is not valid.
A.I. RUBINSHTEIN



PROBLEMS 207

13. Consider a 2z-periodic function

16 = |

where 0 < p < ¢ and p/q is an irreducible fraction. Then there does not exist a tri-
gonometric series which would converge everywhere to f(x).

[Apply the du Bois-Reymond-Lebesgue Theorem of § 72.]

14. Construct some measurable set E in (0, 27) such that for any interval (a, b)
< (0, 2%) the measures m(a, b) E > Qand m(a, b)) CE > 0 where CE = [0, 2n] —

15. Consider the E-set of problem 14. Then, if

1 for xeE
f(x)={0 for xeCE

there does not exist a trigonometric series which would converge to f(x) in some
interval (a, b).

[Assume the opposite and apply Baire’s theorem concerning the limit of a sequence
of continuous functions (see Lusin, A.17, § 47).]

16. There does not exist a denumerable system of functions f,(x) € C(0, 1) such
that the set of all the functions

N
F(x) = F(X; {ck}’ N) =kz=lckfk(x) (N= 1325 '")

llg for x=2np/q
0 for the remaining x in [0, 2x],

(where ¢, are arbitrary real numbers) coincides with the whole space C(0, 1).
[Assume the opposite and consider the function

P(x) =”§1(—;/f’-frx—’l)f% (x €0, 1),

where 4, = sup |f,(x)]| and w(x, f) is the modulus of continuity of f.]
x€[0,1}
17. If

Y |a, cos V2nk| <o,
=1
then

|al
\ k

< .

T

A.A . MUROMSKII
18. (i) If there exists a set £ < [0, 1] with mE = 1 such that if

D18

|a, cosmhkxy| < o0

k=1

at some point x, € E, then
[
Z k(lnk)lﬂ <®
forany e > 0.

(ii) Prove that the set E (of part (i)) can be chosen such that it contains all the al-
gebraic irrational points of the interval (0, 1).

A.A.MUROMSKIT
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19. (i) If the series

o

Yyl = cosnx) (73.5)

n=1

converges at every point of an interval (a, b), then the series

o0

Ch (73.6)
n=1
converges.
G.H.HArDY (A. 8)
1"
@) If ¢, = —I—(—w)—l- , then the series (73.5) converges for all x e(0, =),
although nie+ 1)

fr o]
Y lel* = o0
n=1

for all real « > 0.

20. If the series (73.5) converges absolutely at all the points of some set E with
mE > 0, then the series (73.6) converges absolutely.

[This statement is proved in the same way as the Lusin—Denjoy theorem of § 61.]





