
CHAPTER I 

BASIC CONCEPTS AND THEOREMS IN THE 
THEORY OF T R I G O N O M E T R I C SERIES 

§ 1. The concept of a trigonometric series; conjugate series 

A trigonometric series is the name given to an expression of the form 

un °° 
-IT + Σ (an cos«* + bn sin«*), (1.1) 

^ «=1 

where an and bn are constants (n = 0, 1,2...)? known as the coefficients of the series.^ 
If such a series converges for all x in — oo < x < + oo, then it represents a function 

possessing a period of 2π. Therefore, if a function is to be represented by a trigono-
metric series, either periodic functions with period 2π are considered or a function is 
taken which is given in an interval of length 2π and is then expanded periodically, 
that is, it is required that/(jc + 2π) = f{x) for any x. 

Trigonometric series play a prominent role not only in mathematics itself but also 
in very many of its applications. But before we discuss this role, we will mention 
first the connection between trigonometric and power series. If we consider the series 

00 

Σ ^ " . (ΐ·2) 
«=0 

where cn = an — ibn, c0 = a0/2 and we suppose that z = reix
9 then the series (1.1) 

is no different from the real part of series (1.2) on the unit circle ; the purely imaginary 
part of the series (1.2) for z = eix is the series 

oo 

Σ (— bn cosnx + an sinw*), (1.3) 
n = l 

which is usually called the series conjugate to series (1.1). 
If it is assumed that the constants cn are bounded then the series (1.2) represents an 

analytic function inside a unit circle, that is, for z = reix, where 0 < r < 1 and 
0 < x < 2π; therefore its real and imaginary parts 

Q 00 

u(r, x) = — + ]T (an cosnx + bn sin«;v)rn 
2 «=i 

t The reason why the free term is written as a0/2 will become clear later (see § 4). 

43 
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and 
00 

v(r, x) = Σ (— bn cosnx + an sinnx)rn 

are conjugate harmonic functions; whence is derived the name "conjugate series". 
The study of the behaviour of conjugate series is no different from an investigation 
of the behaviour of conjugate harmonic functions on the circle \z\ = 1. 

§ 2. The complex form of a trigonometric series 

It is often more convenient to give the trigonometric series 

— + £ (an cosnx + bn sin nx) (2.1) 

a different form. Thus, from the well-known Euler's identity 

eix = cosx + iûnx 
it follows that 

IX I 0—lX elx + e 
cosx = : smx = 

2 ' 2i 

so that we can write series (2.1) in the form 

a0 °° / einx + e~inx e~inx - einx 

Ύ +.?, \a" 2 + ib" 2 

whence, supposing that 

0Q _ an ~ ibn _ an + ibn 

we see that the series (2.1) takes the form 

« = + 00 

Σ Ce'"*. (2-3) 

This is the so-called complex form of the trigonometric series. The partial sum of 
series (2.1), that is, 

ün n 

Sn(x) = — + J^fakCoskx + bksinkx), 

now takes the form 

$ . ( * )= *Z""c*elto, (2-4) 

that is, the convergence of series (2.3) must be understood as the tending to the limit 
of sums of the form (2.4). 

Some problems are concerned with trigonometric series of the form (2.3), the 
coefficients of which are any complex numbers. If it is assumed that the numbers an 
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and bn in series (2.1) are all real, then from formula (2.2) it is seen that the numbers cn 

and c_n are conjugate complex numbers, that is, c_n = ~c~n (the symbol ä always indi-
cates the number conjugate to a). 

§ 3. A brief historical synopsis 

The possibility of representing a function by a trigonometric series was first con-
sidered by Euler in 1753 in connection with the work by Daniel Bernoulli on "Vibrating 
Strings" which had appeared at that time. 

If a string, fixed at both ends, is disturbed from its state of equilibrium and is allowed 
to vibrate freely without being given any initial velocity, then Bernoulli affirmed that 
the position of the string at time t is determined by the formula 

oo TtX 
y = Σ&ρ sinp—r-cospkt, 

P=I * 

where /is the length of the string and k is some coefficient which depends on the den-
sity and tension of the string. The coefficients ap are arbitrary constants and it is 
possible to choose them so that the initial condition is satisfied, namely, the require-
ment that initially the string occupies a certain given position. 

Euler noticed that this assertion by Bernoulli leads to a paradoxical result, ac-
cording to the views of mathematicians ofthat time. Indeed, if y = f(x) is the initial 
position of the string, then assuming t = 0, we should obtain 

J° πχ 
fix) = LapsmP-T> 

that is, the "arbitrary" function/(x) can be expanded as a sine series. However, Euler 
and his contemporaries divided the curves into two classes: those that they called 
"continuous" and the others "geometrical". In contrast to the terminology adopted 
today, a curve was named "continuous" if y and x were connected by some formula: 
on the other hand, a geometrical curve was the name given to any curve which could 
be drawn "free-hand". It is evident from all this that if the curve is given by a formula, 
then being determinable in some small interval, it is automatically determinable every-
where eiset- Therefore they did not doubt that the second category of curves was 
wider than the first, since they could not consider, for example, a broken line to be 
"continuous", but merely composed of sections of continuous lines. 

If an "arbitrary" function could be expanded as a sine series, i.e. represented by a 
formula, this would signify that any kind of "geometrical" curve is a "continuous" 
curve which appeared to be incredible. In particular, D'Alembert noticed that the 
most natural method of disturbing a string from its state of equilibrium is to take 
hold of some point on it and pull it upwards, so that it takes up a position represented 
by two straight lines forming an angle between them. D'Alembert considered that 
a curve of this nature could not be the sum of a sine seriesf f. 

t This property is inherent in analytic functions. 
t t For the result of the argument between Euler and D'Alembert concerning the definition of an 

"arbitrary function", which arose in connection with the solution of the problem of the vibrating 
string, see the extremely interesting report on "Functions" by N.N.Lusint4] (it should also appear 
in Vol. Ill of the Collected Works of N.N.Lusin). 
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The problem of what functions can be represented by trigonometric series arose 
again considerably later in Fourier's researches. In connection with the study of the 
problem of heat transfer he was confronted with the following problem: let the given 
function be 

j — 1 in — π < x < 0, 
/ W = 1 in 0 < x < n. 

It is required to represent it in the form 

^ a n s i n « x . (3.1) 

Fourier indicated formulae with the help of which oc„ can be determined so that series 
(3.1) can have/(x) for its sum. In this way, it is a series of form 

4 Γ sinx 

~π[ 1 
sin3x 

+ —~— + 
sin(2« + l)x 

+ In + 1 

Fourier did not prove that the series is bound to converge to the function f(x)9 but 
this question was answered in the affirmative by later investigations. In any case it is 
important that Fourier first solved the problem of how to determine the coefficients 
of a trigonometric series for it to be able to possess a given function as its sum. It is an 
entirely different question whether this series does indeed converge and does really 
possess this function as its sum. 

§ 4. Fourier formulae 

Let us assume that the function/(x) is not only the sum of a trigonometric series 
but also that this series converges uniformly in — π < x < π; then its coefficients can 
be determined very easily. This follows simply by multiplying 

Q 00 

/ ( * ) = ~w~ + Σ (an COSHX + bn sinnx) 

by cos kx or by sinfcx, by integrating it between the limits — π to + π (which is valid) 
and noting that 

j cosmx cosnx dx = 0, m Φ n, 
—n 

n 

j sinmx sinnx dx = 0, m Φ n, 

(4.1) 

j cosmx sinnx dx = 0, m φ n and m — «, 
—π 

π π 

J QOS2mx dx = j sin2mx dx — π. 
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As a result we obtain t 

an = — f(x)cosnxdx; bn = — I f(x) sinnxdx. (4.2) 
—n —π 

Formulae (4.2) are called Fourier formulae,^ the numbers an and bn are Fourier 
coefficients and finally the series, the coefficients of which are determined by Fourier 
formulae derived from the function f(x), is named the Fourier series of the function 
fix). We will denote it by σ(/). 

§ 5. The complex form of a Fourier series 

If the series representing/(x) is given in a complex form (see §2)ftf, i.e., if we 
suppose that 

/(*)="T>V tof. (5.1) 

then the coefficients cn are determined by the formulae 

n 

f(t)e-intdt (« = 0, ±1, . . . ) , (5.2) 2π J -

which can be obtained either by starting from equalities (2.2) and substituting the 
values for an and bn from the Fourier formulae or in a similar manner to that by which 
the Fourier formulae themselves were produced. Namely, by supposing that 

/(*) = "~Σ° W,kx- (5-3) 
k=—oo 

where the convergence is uniform, multiplying both sides of equality (5.3) by e~inx and 
integrating term by term, we find that 

jf(x)e-inxdx = Σ ck j eHk~n)xdx. 
—n k— — oo —n 

But 
rn ( 0, if k φ n, , x 

t The free term of the series must be written in the form a0/2 for a0 to be obtained from an when 
/ i = 0 . 

t t Strictly speaking, these formulae were already known to Euler, but Fourier began to use them 
systematically; therefore they are traditionally called Fourier formulae and the corresponding series 
Fourier series. 

t t t For references to the text or formulae from the same chapter, the number of the chapter is 
omitted. 
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whence 
n 

j f{x)e~inxdx = 2ncn, 
—π 

which proves the validity of formula (5.2). 
The numbers cn are called the complex Fourier coefficients of the function f (x). 

§ 6. Problems in the theory of Fourier series; Fourier-Lebesgue series 

In §§ 4 and 5 we have solved only the problem of how the coefficients of a trigono-
metric series should be determined if we know that it converges uniformly to some 
function/(x). It was shown that in this case the series possesses coefficients deter-
minable by Fourier formulae, that is, it is a Fourier series of / (x) . 

However, for the function to be the sum of an uniformly convergent series of 
continuous functions, it is necessary that it be continuous. Therefore, it could appear 
that if it is desired to represent a function by a Fourier series, we must confine ourselves 
to the case when it is continuous. We will see that in fact the theory of Fourier series 
embraces a very much wider class of functions. But first of all we must define more 
exactly what we understand by Fourier series. 

Integrals figure in Fourier formulae. We know that the concept of an integral, 
starting with Cauchy, has widened, so that an increasingly large class of integrable 
functions has developed. In this book we will always understand by the class of 
"integrable functions" those integrable according to Lebesgue. These functions, as is 
known, are called summable; the series set up for them are named the Fourier-
Lebesgue series. For brevity's sake we shall simply say "Fourier series" but at the same 
time realise that the series being considered are always summable. 

Let / (x) be summable in [— π9 π]. Then it is always possible to determine for it the 
numbers an and bn from Fourier formulae and to set up a series which we will name 
the Fourier series for this function and write 

a0 » 
f(x) ~ ~w~ + Σ (an COSWJC + bn smnx) (6.1) 

or 

°{f) = ^ r + £ (α„ cos«* + b„sinnx). (6.2) 

The sign ~ indicates that we established this series in a purely formal manner, 
starting from f{x) and using Fourier formulae, but we know nothing of the con-
vergence of this series. A whole succession of problems arises: should the Fourier 
series converge (in the whole interval [— π, π] or at a given point or in a certain set) 
and if so, does it converge to the function f(x) or not? In which cases will the con-
vergence be absolute, when will it be uniform? What can be said of divergent Fourier 
series (is it possible to use them in any way for assessing functions?). These and many 
other problems will be discussed in later chapters of this book. 
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It should also be mentioned that there are cases when thje trigonometric series is 
given by its coefficients but we do not know whether it is a Fourier series of a certain 
function or not. This is one of the very interesting but difficult problems of the theory 
of trigonometric series. 

§ 7. Expansion into a trigonometric series of a function with period 2/ 

Up until now we have considered the expansion into a trigonometric series of a 
function with period In. If the function/(x) has a period 2/, where / is some real 
number, then performing a change of variable, 

It 
x = 

we obtain the function 

x= V ' 
n 

*(')-/(£). 
which will also possess a period 2n. 

If we find its Fourier series 

where 

(7.1) 

do 
9>(0 ~ ~7Γ + Σ (an coswi + bn sin«t), 

π π 

<*η = -— I Q*(t)coshtdt; bn = — w(i) sinnt dt, n J n J 
—n —n 

then, reverting again to the variable x, we obtain 

n I 

an = — / ( — I cosnt dt = y f(x) cosn~xdx, n = 0, 1,..., 
-n -I 

1 f (lt\ . I f π 
bn — ~ \f\ — )sin«/rfi = y \ f(x)smn~xdxy w = l , 2 , . . . , 

-n -I 

and therefore the function/(x) will correspond to the series 

a0 ™ / n n \ 
fix) ~ Ύ + Σ I an c o s " y ^ + K sin« y x I, (7.2) 

where the numbers an and £„ are determined by the formulae (7.1). 
Everything that will be said later concerning the convergence of normal trigono-

metric series is completely applicable to series of the form (7.2). 
Finally we consider the case when the function/(x) is not periodic. If it is defined 

in a certain interval [a,b] where —n<a<b<n (Fig. 4) and is summable 
in it, then it is possible to expand it into a trigonometric series thus: construct a 
3a Baryl 
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function φ(x) coinciding with f(x) in [a, b] and defined in (—π,ά) and (b, π) as 
desired, provided that it is summable. Then assuming that <p (x + 2π) = φ(χ) we 
expand φ (x) into a Fourier series. We assume that this series converges to φ (x) at a 
certain point x, a < x < b; this means that its sum at this point will equal / (x) . 

n' 
-Λ a 0 b JC 

FIG. 4 

It is clear that on extending f(x) by various means outside the limits (a, b), we will 
obtain various functions φ(JC). However, it will be proved subsequently (see § 33) that 
the Fourier series of all these functions will behave identically, that is, if one of them 
converges t o / (x ) at a given point, then all the others will also converge likewise. 

§ 8. Fourier series for even and odd functions 

I f / (x ) is even, i.e. / ( — x) =f(x) and g(x) is odd, i.e. g(— x) = —g(x), then 
f(x) g(x) is evidently odd; on the other hand, iff(x) and g(x) are both even or both 
odd, then/(x) g(x) is even. 

It can be concluded immediately from this simple statement that for any even 
function the Fourier series contains cosines alone and for any odd function sines 
alone. Indeed, for any odd function φ(χ) and for any a > 0 we have 

a 

j (p(x)dx = 0, 
—a 

and therefore for even/(x) we have 

n 
l r 

bn = — f(x) sinnx dx — 0 {n = 1, 2, 3, . . . ) , 
π J 

— 71 

and for odd / (x ) we have 

l r 
an~ — f{x) cosnx dx = 0, (n = 0, 1,...). 

π J 
—π 

Moreover, for any even φ (x) and for any a > 0 we have 
a a 

J φ(χ) dx = 2 J φ(χ) dx. 
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Therefore, in conclusion: iif(x) is even, then 

a0 

where 

iff(x) is odd, then 

where 

σ(/) = — + £ a „ c o s « x , 

n 

2 Γ an = ~~ / (x )cos«x dx; 
71 J 

0 

oo 

7 1 =1 

2 Γ 
^η = ~~ / ( * ) sinwx dx. 

71 J 

§ 9. Fourier series with respect to the orthogonal system 

When we set ourselves the task of defining the coefficients of a trigonometric series 
so that it converges to a given function/(x) we only considered a particular case of an 
extremely general problem. In order to formulate this problem we introduce the 
concept of an orthogonal system. 

A system of functions φη(χ) e L2 (a, b) (n = 1,2,. . .) is said to be orthogonal in the 
interval [a, A], if 

\ (pm(x)q>n{x)dx= 0 πιφη\ m = 1 , 2 , . . . ; « = 1 , 2 , . . 

\ Cp2n{x)dx φ 0 « = 1,2, . . . . 

(9.1) 

The relationships (4.1) are simply proof of the orthogonality of the trigonometric 
system 

1, cosx, sinx, . . . , cos/z*, sin«*, .. . 

in the interval [—π,π]. 
The orthogonal system is said to be normal, if 

b 

\cp2
n{x)dx= 1 ( H = 1,2,...). 

a 

Rademachefs system111 can serve as an example of a normal orthogonal system; 
it is set up thus: the interval [0,1] is divided into 2" equal intervals and the function 
rn(x) is assumed to equal + 1 in the first, third, ..., (2n — l)th interval and to equal 
— 1 in the second, fourth,..., 2n th interval (i.e. it assumes alternately the values + 1 
and — 1) and at the end points of the intervals it is considered to equal zero. This 
holds for all values of n (n = 1, 2 , . . . ) . The orthogonality of the system {rn(x)} ob-
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tained in the interval [0,1] follows from the fact that if m # n (let m < ή), then the 
function rn(x) in every interval when rm(x) is constant takes the value +1 just as 
many times as the value — 1 and the lengths of the intervals in which it is constant 
are all equal. Thus we are satisfied that 

1 

S rm{x)rn{x)dx = 0 (m φ ή). 
o 

Since for any n we have r2
n(x) = 1 everywhere, apart from a finite number of points, 

then the system {rn(x)} is normalf. 
Later whilst studying the properties of trigonometric series Rademacher's system 

will prove very useful. 
A trigonometric system is not normal but can be made normal, if the first function 

is multiplied by ï/y/ΐπ and all the other functions by l/y/π, that is, the system 

1 cosx sinx cosnx sinnx 

\2jl \]7t \J7l yjTt yjTt 

is already a normal orthogonal system. 
We will not consider the question why the study of orthogonal systems is extremely 

interesting and important. Specialized books are devoted to this question. Here we 
shall merely show that a whole series of theorems concerning the theory of trigono-
metric series can be obtained extremely easily, starting from very general results re-
lating to the so-called orthogonal series. 

A series of the form 
00 

Σ^Ψ-(Χ), (9-2) 

where cn are constant coefficients and {φη(χ)} is a given orthogonal system of functions, 
is called a series with respect to the orthogonal system {<pn(x}} or briefly, an orthogonal 
series. 

In the same way as we described how to find the coefficients of a trigonometric series 
if we know that it converges to a certain function/(x), we can discuss how to deter-
mine the coefficients cH, if we know that 

00 

/(χ) = Σ^ψΜ· (9-3) 
#1 = 1 

We again assume that the series converges uniformly. We suppose that the system 
{φη(χ)} is orthogonal and normal in (a, b). Then multiplying both sides of equality 
(9.3) by q>m(x) and integrating between the limits from a to b we findtt 

b b 

S f(x)<Pm(x)dx = cm j <pl(x)dx = cm9 

t The reader can find more detail of the properties of Rademacher's system in Kaczmarz and 
Steinhaus's book, réf. A 12. 

t t Here the functions <pn(x) a n d / ( x ) are supposed to be such that the integrals (9.4) have meaning. 
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b 

cm = / f{x)<pm{x)dx (m = 1,2,...). (9.4) 
a 

These formulae are also called Fourier formulae and if for some functions/(x) the 
numbers cn are found from the formulae (9.4) and the series (9.2) is formed from them, 
then it is named the Fourier series for the function f {x) with respect to the orthogonal 
system {φη{χ)}. . 

Here, as in the case of the trigonometric system, the hypothesis of uniform con-
vergence of the system was extremely limiting. We can consider a Fourier series for 
the function f(x) with the single assumption that the integrals (9.4) have meaning 
and then write 

00 

Just as in the theory of trigonometric series, the question arises of the convergence 
of the Fourier series and to what extent it characterizes the function/(x). 

It is, above all, clear that for the Fourier series to be able to define to any extent 
the properties of a function, it is necessary that there should not be identical Fourier 
series for two different functions. To explain the problem when this does occur, we 
must first study the concept of the completeness of an orthogonal system. The problem 
will be discussed in § 10. Here we shall just describe what we understand by an ortho-
gonal system in the case when the functions φη(χ) are complex. 

If the functions φη(χ) are complex functions of the real variable x, then they are 
said to be orthogonal when 

b 

j <Pm(x)<Pn(x)dx = 0 (m Φ n) (9.5) 
a 

and 
b 

f \cpn(x)\2dx Φ 0, (n= 1,2,...). (9.6) 
a 

!\<Pn(x)\2dx = 1 ( « = 1,2,...). 
a 

In the case of complex functions the Fourier formulae take the form 

The system is normal if 

for normal systems and 

for non-normal systems. 

cn = \f(x)<Pn(x)dx 

a 

b 

J f(*)$n(x)dx 

S \<Pn(x)\2dx 

(9.7) 

i.e.
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An important example of an orthogonal system of complex functions is the system 
{einx} (« = 0, + 1, ± 2 , . . . ) ; it is orthogonal over any interval of length 2π (see § 5). 
If the multiplier \\\jln is introduced, i.e., if the system 

fos-·"} *■-ft ±'·■·■)· 
is considered, then it is also normal. 

§ 10. Completeness of an orthogonal system 

We now introduce the following important definition.f 
DEFINITION. The system of functions {<pn(x)}, defined in some interval [a,b], is 

said to be complete in LP [a, b] (p > 1) (or in C [a, b]) if there does not exist a single 
function f(x)eLp [a, b] (orf(x)e C [a, b]), which is orthogonal to all the functions 
of this system, unless/ (x) = 0 almost everywhere in [a, b] (for the case of the space C, 
everywhere in [a, b]). 

In other words, for a complete system of the equalities 

b 

!f(x)<Pn{x)dx = 0 (n = 1,2, ...) (10.1) 
a 

and f o r / ( x ) e L p [a, b] it should follow tha t / (x ) = 0 almost everywhere in [a, b] 
(similarly for space C, but the word "everywhere" should be substituted for the words 
"almost everywhere"). 

For the integrals occurring in (10.1) to have meaning for a n y / ( x ) e L [a, b], it is 
necessary and sufficient for all φη(χ) to be bounded in [a, b]; iff(x)eLP [a, b], then 
it is necessary and sufficient for φη(χ)e Lq [a, b] (n = 1, 2, ...) where \\p + \jq = 1 
(see Introductory Material, § 9 and Appendix, § 3), finally for f(x) e C from the func-
tions φη(χ) only summability is required. 

The concept of completeness is introduced without assuming the orthogonality 
of the system {φη(χ)} but we will be interested in the case when it is orthogonal. 

If the functions φη(χ) are complex, then the definition holds, only instead of equa-
tions (10.1) we must write 

b 

S f(x)<Pn(*)dx = 0 (/! = 1,2,. . .) . 
a 

If the two functions f(x)eLp [a, b] and g(x)eLp [a, b] are different in a set of 
measure greater than zero, then they cannot possess identical Fourier series with 
respect to a system of functions {φη(χ)} complete in LP [a, b] (at p > 1). Indeed, if 
this were the case, then the difference ψ(χ) = f(x) — g(x) would be functions be-
longing to LP [a, b] and orthogonal to all {φ„(χ)}, whilst the condition ψ(χ) = 0 almost 
everywhere in [a, b] is not fulfilled and this contradicts the definition of completeness 
of the system. 

t For all the notation used here reference should be made to the Notation (p. xxiii). 
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§11 . Completeness of the trigonometric system in the space L 

We shall prove that the trigonometrical system is complete in the space L(— π, π), 
i.e., we shall demonstrate that two summable functions possess identical trigonometri-
cal Fourier series only in the case when they coincide almost everywhere in (—π, π). 

For this we prove first of all that if the completeness of the trigonometric system is 
already known in C, then we can immediately obtain from it its completeness in L. 

In fact, we assume t h a t / ( x ) e L and 

(11.1) 

j f{x) cosnx dx = 0 (n = 0, 1,...), 
—π 

π 

j f(x) sinnx dx = 0 (n = 1, 2 , . . . ) . 

Then denoting the Fourier coefficients off(x) by an and bn we have 

an = 0 (H = 0, 1,...), 

bn = 0 ( « = 1 , 2 , . . . ) . 

Let us consider the function 

F(x) = ff(t)dt 
—π 

in 
— π < x < π 

and 
F(x + 2π) = F(x). 

It is clear that F{n) = πα0 = 0 and F(—n) = 0, consequently F{x) is continuous 
not only in [—π,π] but also along the whole straight line — oo < x < + oo. We 
find its Fourier coefficients An and Bn by integrating by parts, so that 

π η 

I f I f 
An — — F(x) cosnx dx = f(x) sinnx dx = 0. 

π J ηπ J 
—π —π 

(due to (11.1)) and similarly 

n n 

Bn = — F{x) sinnx dx — f(x) cosnx dx = 0 (n = 1, 2 , . . . ) . 

—π —π 

Thus, all the Fourier coefficients for F(x) apart from AQ should be equal to zero. 
Since F(x) is continuous, then supposing Φ(χ) = F(x) — A0/2, we see that Φ(χ) is 
continuous and all its Fourier coefficients equal zero, i.e., it is orthogonal to all the 
functions of the trigonometric system. But we have already assumed that the trigono-
metric system is complete in C. This means that Φ(χ) = 0 and therefore F(x) = A0/2 



56 BASIC THEORY OF TRIGONOMETRIC SERIES 

= const. But since F'(x) = f{x) almost everywhere, then/(x) = 0 almost everywhere 
and this is what was required to be proved. 

We will now prove the completeness of the system in C. 
We have defined (Introductory Material, § 22) a trigonometric polynomial as any 

expression of the form 
n 

Tn(x) = a0 + ^((/.kcoskx + ßksinkx). (Π.2) 
k=l 

It is clear that iff(x) is orthogonal to all the functions of the trigonometric system, 
then it is orthogonal also to any trigonometric polynomial, i.e. for any Tn(x) 

π 

jf(x)Tm(x)dx = 0. (11.3) 
—n 

We will show that if f(x) is continuous but not identically equal to zero, then a 
trigonometric polynomial Tn(x) can be chosen such that the integral on the left-hand 
side of equation (11.3) is positive; then it becomes clear that it is only possible to 
avoid the contradiction if it is assumed tha t / (x) = 0. 

Thus, le t / (x) φ 0; then a point f can be found such tha t / ( I ) = c φ 0. It can be 
assumed that c > 0, without altering the whole argument (since in the opposite case, 
it would be sufficient to show that —f(x) = 0). It can also be assumed that £ = 0, 
since if we are able for the functions q>(x), of which φ(0) > 0, to find a polynomial 
T*n(x) for which 

n 

j <p(x)Ttt(x)dx > 0, 
—n 

then, supposing <p(x) = / ( £ + x) and Tn(x) = T*(x — I) , we see that 

n n n 

\ f(t)Tn(t)dt = J/G + χ)Τη{ξ + x)dt = J <p(x)rH{x)dx > 0. 
—π —π —π 

Thus, it remains to prove that if /(0) = c > 0, it is possible to find a polynomial 
Tn(x) for which 

π 

jf(x)TH(x)dx > 0. (11.4) 
—n 

But if /(0) = c > 0, then because of the continuity oîf(x) it is possible to find an 
interval (— δ9 + δ) where/(x) > cß. We have 

π δ —δ π 

jf(x)Tn(x)dx = jf(x)Tu(x)dx + \f{x)Tn(x)dx + j f(x)T„(x)dx. 
—π —ô —n Ô 

Since/(x) is continuous, then it is bounded, i.e. 

\f(x)\<M - π < χ < π , (11.5) 
where M is a constant. 
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Let A > 0 be given. We will assume that Tn(x) can be chosen such that the following 
conditions are satisfied 

Tn(x)>l in ( - 0 , 0 ) , (11.6) 

π 

j Tn(x)dx > A (11.7) 
—71 

and 
| Ï ; ( JC) | < 1 in ( - π , δ) and (<5,π). (11.8) 

Let us take A > 4Mn/c, where M is given by condition (11.5). Then 

π 

Γ cA 
f(x)T„(x)dx > — M · 2π > 0 

—π 

and this signifies that (11.4) occurs and now the proof will be concluded. 
So, it remains to choose a trigonometric polynomial Tn(x) such that the conditions 

(11.6), (11.7) and (11.8) are satisfied. 
To find this polynomial we note that if 

T(x) = 1 4- cos* — cos<5, 

then T(x) > 1 in ( - <5, δ) and \T(x)\ < 1 outside ( - δ, δ), and therefore for 

Tn(x) = [T(x)]n 

we also have 

| Γ Π ( Λ : ) | < 1 outside ( - 0 , <5) and Γ„(Λ:) > 1 in (-δ, δ). 

. Moreover, in (— δ/2, δ/2) we have 

à 
T(x) > l + cos ^r— cos δ = q > l , 

and therefore 
(5 (5/2 

j Tn(x)dx > j Tn(x) dx > qnö -> oo 
- < 5 - Ô / 2 

as « ->oo , which means that for any A9 by choosing n sufficiently large, the inequality 
(11.7) can be fulfilled. 

It remains to prove that Tn(x) is a trigonometric polynomial. But since T(x) 
= cos* + c, where c is a constant, then [T(x)]n is a trigonometric polynomial for 
any n (see Introductory Material, § 22). 

Thus, our theorem is completely proved. From the very definition of completeness 
of the system in the space LP it follows that if// > /?, then the completeness in Lp 

implies completeness in Lp'. In particular, the trigonometric system which is complete 
in L (§ 11) will be complete also in LP for any/? > 1. 
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§12. Uniformly convergent Fourier series 

From the completeness of the trigonometric system in C, the following simple but 
important conclusion can be drawn: 

THEOREM. If the Fourier series for a continuous function f (x) converges uniformly, 
then the sum of this series coincides withf(x). 

Indeed, let 
an °° 

fix) ~ ~̂ ~ + Σ (a" cosnx + bn ûnnx), 2 η==ί 

where/(x) is continuous, and the series on the right-hand side converges uniformly 
in [ — π, π\. We will denote its sum by S(x). It is clear that S(x) is continuous. But 
we have seen (see § 4) that if S(x) is the sum of an uniformly convergent trigonometric 
series, then its coefficients an and bn are obtained from S(x) by means of the Fourier 
formulae. On the other hand, it is conditional that an and bn are obtained from/(x) 
by means of the Fourier formulae. Thence it follows that S(x) and/(x) possess identical 
Fourier coefficients. Therefore, because of the completeness of the trigonometric 
system in C, they should coincide identically. 

Later (see § 48) we will show that in this theorem the requirement of uniform con-
vergence can be discarded and it can be affirmed that if f(x) is continuous, then at 
any point where its Fourier series converges, it converges tof(x). 

At the present moment, as we are referring to uniformly convergent series, it is 
appropriate to prove one lemma, which will be used frequently later. 

00 

LEMMA. Let the trigonometric series a0/2 + £ (a„cos«x + bnsinnx) possess a 
n = l 

sub-sequence of partial sums, converging uniformly to some function f (x). Then this 
series is its Fourier series (in particular, this statement is more accurate, when the 
series itself converges uniformly tof(x)). 

Indeed, let S„k(x) (k = 1,2,.. .) converge uniformly to f(x). Then, the more so 

| I / ( * ) — Snk (x) I dx -> 0 as k -► oo . 
— n 

Hence for any m we have 
π 

S lf(x) — Snk (x)] cosmx dx -> 0 as k -► oo, 
—π 

π 

j Uix) ~~ $nk (x)] sinmx dx -> 0 as k -► oo, 
— 71 

i.e. 
n π 

lim j S„k (x) cosmx dx = J f(x) cosmx dx 
&->00 _ π _ π 

and similarly for sin mx. But because of the orthogonality of the trigonometric system, 
if nk > m, then we have 

π π 

J S„k (x) cosmx dx = am J cos2rax dx = nam, 
— n —7t 
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and therefore 
TC 

lim \ SKk (x) cosmx dx — nam 
k-*cc —re 

which means n 

am = — f(x) cosmx dx 
π J 

— n 

and similarly for bm. Thus the lemma is proved. 

§ 13. The minimum property of the partial sums of a Fourier series; 
Bessel's inequality 

Let us now return to the general case, i.e., to considering the Fourier series with 
respect to any orthogonal system. We will refer to orthogonal systems complete in 
L2, since they possess a number of important properties which we will proceed to 
study. 

Let {φη(χ)} be complete in L2 [a, b] and orthogonal and normal in this interval. 
We set ourselves the following problem : given a function/(x) e L2, we take n functions 

n 

of the system {φη (x)} and consider all possible expressions of the form Σ ακφΗ (χ), which 
k=\ 

are known as polynomials of the wth order with respect to the system {<pn(x)}. We 
want to know how to choose the constants a l 9 a2 , . . . , ocn so that the polynomial 

n 

Σ α*9>*(*) gives the best approximation iorf(x) in the metric spaceL2, i.e. for the 
k=l 

norm of the difference n 

k=\ 

to be a minimum. We will prove a theorem. 
THEOREM. Of all the polynomials of the n-th order with respect to a normal orthogonal 

system {φη(χ)}, the best approximation in the metric space L2forf(x)eL2 is given by 
the n-th partial sum of its Fourier series with respect to this system. 

In order to verify this theorem which we will prove generally by assuming that 
φη(χ) is complex, we write, using the identity \A2 \ = A - Ä: 

fix) - Σ **?>*(*) 

b 

= j /(*) - Σα*φ*(χ)\ dx 

a I k-=l I 

ί fix) - Σ <**?*(*) fix) - Σ <**?*(*) dx 

a l *=1 J L k=\ J 
b n b _ n _ b 

j \fix)\2dx - Σ α * J fix)<Pkix)dx - Σ α * J fix^kix)dx 
a k=l a k=\ a 

n n _ b 

+ Σ Σα*α./ S ψΛχ)ΨΜ)άχ\ 
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b 

j <pk(x^j(x)dx = 0 for ΙζΦ j , 
a 

b 

! \<Pk(x)\2dx= 1 for i = 1,2,.. . , 

a 

n ° n n n j \f(x) - Σ<Χκψΐι(χ)\2άχ = j \f(x)\2dx - £>fccfe - Σ äkck + Σ Κ Ι 2 > k=\ k=l 

where ck are the Fourier coefficients of the function/(x). 

In other words (adding and subtracting ]T \ck\
2), 

f(x) - ΣακψΛχ) = WfWh + Σ Ι ^ - « * Ι 2 - Σ Ι ^ Ι 2 · (13.1) 
L2 k = \ k=l 

It is clear that the right-hand side of (13.1) will be a minimum when and only 
when 

ak = C]c (k = 1 ,2, . . . ,«) , 
and the theorem is proved. 

Substituting the numbers ck in (13.1) instead of afc, we obtain as a result 

| / ( * ) - t,Ck<Pk(x) = l l / l l i 2 -Z l ^ l 2 · 
L2 k=\ 

(13.2) 

Since the left-hand side of equation (13.2) is non-negative, then the right-hand side 
is also non-negative and therefore 

ΣΜ 2 <ΙΙ / Ι !£ -
k = l 

oo 

This inequality is true for any n and therefore the series £ \ck\
2 converges and 

* = i 

/c=l 
(13.3) 

The inequality (13.3) is called BesseVs inequality. It holds for any normal orthogonal 
system and for any / (x )eZA 

§ 14. Convergence of a Fourier series in the metric space L2 

An important theorem can be obtained easily from Bessel's inequality. 
THEOREM. For any function with an integrable square, the Fourier series with respect 

to any normal orthogonal system converges in the metric space L2. 
In order to prove this assertion, we recall (see Introductory Material, § 21) that for 

convergence of the sequence fn(x) in the metric space L2 it is necessary and sufficient 
that for any ε it is possible to find N such that 

\\fn(x) -fm(x)\\Li < s for n >N and m > N. 
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We will show that this criterion is fulfilled if the partial sums Sn(x) of the Fourier 
series for f(x)eL2 play the role of the functions fn(x). 

We have for any integer n and p > 1 

I IW*) Sn(*)\\h 

- J 

n+p 

Σ wax) 
k=n+l 

n+p 

L* 

Σ Ck<Pk(x) 
k=n+\ 

2 n+p 

dx = Σ lc*l2> 
k=n+l 

since the system {φη(χ)} is orthogonal and normal. But by virtue of Bessel's inequality 
oo 

we know that if f (x)eL2 , then £ \ck\
2 < + oo, and therefore for any ε > 0, it is 

n+p /c=l 
possible to find N such that £ | cfc |

2 < ε for n > iV and then 

IIW*)-S.(*)II^<«> 
which concludes the proof of the convergence of the Fourier series fo r / (x )eL 2 . 

However, it should be noted that only the convergence of the Fourier series in the 
metric space L2 was proved. It is not evident from this that the sum in the sense of the 
metric space L2 of this series should be equal to the function f(x). This in fact is not 
always the case. The question whether the Fourier series in the metric space L2 does 
converge to a given function is linked with the question of the so-called closure of the 
orthogonal system in the metric space L2. We will now start discussing this question. 

§ 15. Concept of the closure of the system. Relationship between closure and 
completeness 

It is said that the system of functions {φη(χ)} is closed in the space C in [a, b] or in 
Lp(p > 1) in [a, b]9 if it is possible to represent any function f(x) e C (or f(x)eLp) in 
this space to a given degree of accuracy in the form of a polynomial with respect to 
the system {<p„(x)}. 

Re-stating this more precisely, the system {<pn(x)} is closed in C (or in U) if for any 
f(x)e C (or f(x)eLp) and for any ε > 0 it is possible to choose the numbers <xl9 

a 2 , . . . , «„ , so that n 

I/O*) "■ Σ^'κφΛχ)] < ε at Ö < X < 6 

or 

fix) - Σα*ψ^χ) < ε. 

We will now formulate without proof two theorems referring to the connection 
between closed and complete systems, namely: if \jp 4- l/# = 1, then every system 
closed in Lp(p > 1) (or in C) is complete in Lq (or in L). Conversely, every system 
complete in Lp(p > 1) is closed in ZAf 

f The proof of these theorems can be found, for example, in Kaczmarz and Steinhaus's book, 
réf. A 12. 
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We will consider in more detail only the most important case, when/? = 2. In this 
case q = 2 and the formulation of our theorem leads to : 

THEOREM. In the space L2 the completeness and closure of a system are equivalent, i. e. 
every complete system is closed and vice versa. 

This statement can be proved for any systems consisting of functions occurring 
in L2. But we shall confine ourselves to a consideration of the case when the given 
system is orthogonal. Moreover, since neither the closure nor the completeness of a 
system can disappear or appear, if we multiply all the functions of the system by any 
constants, then the system can be assumed to be normal. 

Thus, let {<pn(x)} be a normal orthogonal system in the interval [a, b]. We have 
seen in § 14 that for any f(x)eL2 [a, b] its Fourier series with respect to the system 
{<Pn(x)} converges in the metric space L2. We will denote its sum by F(x), then 

Fix) = £c*?fc(*)> (15.1) 
k = l 

where the equal sign is understood to mean convergence in the metric L2. 
We will prove that the numbers cn are the Fourier coefficients of the functions F(x). 

In fact, multiplying both sides of equality (15.1) by φη(χ) and integrating (this is 
valid according to Riesz's theorem, see Introductory Material, § 21), we have 

J F(x)cpn(x)dx = £ ck j <pk{x)(Pn{x)dx. (15.2) 
k=\ 

Because of the orthogonality and normality of {<pn(x)}, we find that 

b 

cn = J Γ(χ)φη(χ)άχ. 
a 

Hence we conclude that all the Fourier coefficients of the functions f(x) and F(x) 
are identical. If it is assumed that the system {φη(χ)} is complete, then this is possible 
only in the case when/(x) = F(x) almost everywhere and therefore we obtain 

/ ( * ) 
Λ=1 

Here the equality sign is again understood in the sense of convergence in L2. Therefore 

/ ( * ) - Σ ck<Pk(x) 

as n -> oo, i.e. for any ε > 0 it is possible to find N such that 

fix) - Σ^ΨΛΧ) 
k = \ 

< 8. 

But/(x) was any function of L2. Therefore, in agreement with the definition of closure, 
we see that {(pnix)} is closed in L2. 

Thus, we have proved that the completeness of a system in L2 implies its closure in 
L2. The converse is very easily proved. 
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Let {φ„(χ)} be a closed system in L2 a n d / ( x ) any function of L2. Then for any 
ε > 0 it is possible to choose numbers ocl9 a2 , . . . , ocn such that 

f(x) - Σ^ΨΛΧ) 
k=\ 

< 8. 

But it was proved (see § 13) that of all the polynomials of order n with respect to the 
system {φ»(χ)} the best approximation tof(x) in the metric L2 is given by the poly-

n 

nomial Y,ck(pk(x), the coefficients of which are the Fourier coefficients of f(x). 

Therefore 

< 
I k = l 

But since we know (see (13.2)) that 

I n 

\f(x) - Σ€*φ*(χ) 
k=l 

then 

whence it follows that 

k = \ 

= l l / l l 2 -Ek*l 2 

< ε. 

Ο < Ι Ι / Ι Ι 2 - Σ Ι ^ Ι 2 < ^ 

ΣΙ^Ι2 = ll/ll2· (15.3) 

We have seen earlier (§ 13) that for any normal orthogonal system BessePs in-
equality (13.3) holds 

!>*I2<II/H2· 
k=l 

We now see that in the case of a closed system this inequality changes to the equal-
ity (15.3); it is usually known as ParsevaVs equality. 

Thus, if a system is closed, then for anyf(x)eL2 ParsevaVs equality holds. 
But from this the completeness of the system {<p„(x)} in L2 follows immediately, 

since if the function/(x) e L2 is orthogonal to all functions of the system {φη(χ)}, then 

b 

cn = 1/{χ)φη(χ)αχ = 0 (n = 1, 2 , . . . ) , 
a 

i.e. all its Fourier coefficients equal zero; but then | |/ | |2 = 0 due to (15.3), i.e. 

b 

\\f\*dx = 0, 
a 

and this is possible only if fix) = 0 almost everywhere. 
Thus, the closure of a system in L2 implies its completeness in L2 ; and the proof 

is concluded. 
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§16. The Riesz-Fischer theorem 
00 

We have seen in § 13 that for any function f(x)eL2 the series £ \c„\2, comprising 

the squares of the moduli of its Fourier coefficients, converges for any orthogonal 
system. Moreover, in the case when the system under consideration, is complete, then 
(see 15.3) 

ιι/ιι2 = Σ κ ι 2 · 
But the following considerably deeper theorem also holds : 
THE RIESZ-FISCHER THEOREM. Let cn(n = 1, 2, ...) be any sequence of numbers for 

00 

which ]T | cn\
2 < +00 and {φη(χ)} be any normal orthogonal system. Then there exists 

anf(x)eL2 such that the numbers cn are its Fourier coefficients with respect to this system; 
if the system is complete, then there exists only one suchf{x). 

OO 

To prove this we note that if a series ]T cn<pn(x) is set up, then it should converge in 
00 M =l 

the metric L2; indeed since ]T \cn\
2 < + oo, then for any ε > 0, N can be chosen 

oo n =--·-1 

sufficiently large for ]T \cn\
2 < e. But then 

I I W * ) - Sn(x)\\2 ="Î\ck\
2 <e (n>N,p>0) 

n+l 

(we have already carried out a similar argument in § 14); therefore, the sequence Sn(x) 
converges in the metric L2. Thus, anf(x) is found such that \\f(x) — Sn(x) \\Ll -> 0 

00 

as « -^ oo. Repeating the argument of § 15 we see that the series £ cn<pn(x) is the 

Fourier series for / (x) , whilst if the system is complete, this/(x) is the only one. 

§ 17. The Riesz-Fischer theorem and Parseval's equality for a 
trigonometric system 

Both the Riesz-Fischer theorem and Parseval's equality have been proved for 
normal systems of functions. Therefore they hold for the system 

1 cosx sinx cosnx ύηηχ 

Therefore, if a0, an, bn are a sequence of numbers for which 

a2 °° 
- f + Σ (<£ + « ) < +«>> 07·1) 

then it is possible to find F(x) such that 

a0 Ç 1 Γ cosnx Γ sinnx 
.- —]~=-F(x)dx; an= F(x)—j^—dx; bn = Fix)—j=-dx. 
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Hence, supposing/(*) = yJnF(x), we see that 

π it Tt 

a0 = — f(x)dx; an — — f{x) cosnxdx; bn = — f(x) sinnxdx. 
71 J 71 J 71 J 

—n —n —n 

Thus, if the series (17.1) converges, then there exists f(x)eL2, such that the series 
with coefficients an9 bn is a Fourier series. 

Parseval's equality for a trigonometric system takes the form 

π 

1 Γ al °° 
- p(x) άχ = -^ + Σ(αι

η + b2„). (17.2) 
—π 

We will also note that by virtue of the minimum property of partial sums of a 
Fourier series (see § 13), we can state particularly for the case of a trigonometric 
series, that of all the trigonometric polynomials of order not higher than «, the best 
approximation in the metric L2 for any/(x) e L2 is given by the «th partial sum of the 
series o(f). 

In Introductory Material, § 24, we denoted by E(
n
p)(f) the best approximation of 

f{x)eLP in the metric LP by trigonometric polynomials of order not higher than n; 
this means 

£<2)(/) = | J \f(x) - sn(x)\2dx^. (17.3) 

This formula will be useful later. 

§ 18. Parseval's equality for the product of two functions 

In this section we will only consider functions which assume real values. 
We note yet another useful equality, easily derived from Parseval's equality. 
Iff(x)eL2 andg(x)eL2, and the system {<pn(x)} is orthogonal, normal and complete in 

(a,b), whilst cn are Fourier coefficients for f(x) and dn are Fourier coefficients for 
g(x), then we have the formula 

\f{x)g{x)dx^Yucndn. (18.1) 
a n=\ 

Indeed, if feL2 and geL2, then this is just as true for their sums and applying 
Parseval's equality t o / ( x ) , g(x) and / (x ) + g(x), we have 

- oo oo 

jf2(x)dx = Σ cl jg2(x)dx = Σ dl, (18.2) 
a # i = l a # i = l 

J [/(*) + g(x)?dx = Σ (c„ + d„)2. (18.3) 
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Removing the brackets on the left-hand side of (18.3) we obtain 

b b b b 

! [/(*) + g(x)?dx = jf2(x)dx + 2 jf(x)g(x)dx + j g2(x)dx 
a a a a 

00 00 00 

« = 1 « = 1 « = 1 

Subtracting equation (18.2) from (18.3) and dividing by 2, we obtain the desired 
formula (18.1). 

For the case of the trigonometric system, formula (18.1) takes the form 

n 

— f f(xM*)dx = ^ - + t («»«» + K βη), 
TZ J I n^l 

—π 

where an9 bn are the coefficients for/(x) and αη, βη are the coefficients for g(x). 

§19. The tending to zero of Fourier coefficients 

00 

We have seen that if/(x) e L2, then £ | cn \
2 < + oo, whence it immediately follows 

that | cn | -> 0 as n -> oo. This holds for any orthogonal system. Moreover, the Riesz-
Fischer theorem proves that if for some cn we have £ c2

n < + oo, then these cn are 
certainly Fourier coefficients of some function f{x)eL2. 

Matters become considerably more complicated if f(x)eL b u t / 2 ( x ) is non-
summable. Then we can say very little about the Fourier coefficients of f(x). It 
would be true to say that given a sequence of numbers cn for which £ c2

n = + oo, 
then we do not even know whether there exists a function that possesses these numbers 
for its Fourier coefficients. 

We will state here a few simple facts which will permit us to judge Fourier coef-
ficients to a certain extent. 

MERCER'S THEOREM. If for an orthogonal normal system^ {φ„(χ)} the functions are 
all bounded, i. e. 

\φη{χ)\<Μ a<x<b ( « = 1 , 2 , . . . ) , 

then the Fourier coefficients of any summable function with respect this system tend to 
zero. 

Let / (x ) be summable and ε > 0 be given; we will first find a function F(x), for 
b 

which J \f(x) — F(x)\ dx < ε, whilst F(x) is bounded. This is always possible from 
a 

the very definition of a Lebesgue integral. 

t Here we are concerned only with functions which assume real values. 
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Since any bounded function is known to belong to L2, then its Fourier coefficients 
tend to zero, which means that for a sufficiently large N we will have 

Moreover 

and then 

and therefore 

S F(x)cpn(x)dx 

a 

b 

S [/(*) - F(x)]<pm(x)dx 
a 

/ f(x)<Pn(x)dx 

< e at n > N. 

<Με. 

< ε(1 + M) for n > N, 

jf(x)<Pn(x)dx -* 0 a s n -* °°, 
a 

and the theorem is proved. 
Since a trigonometric system consists of functions which are all bounded, it follows 

in particular that 
THEOREM. For any summable function its Fourier coefficients with respect to the 

trigonometric system tend to zero. 
This fact has very great significance since later (see § 62) we will see that the trigono-

metric series, the coefficients of which do not tend to zero, can converge only in a 
set of measure zero. However, the tending to zero of the coefficients of a trigonometric 
series alone is not sufficient for it to converge (see § 63); moreover, we will later see 
(Chapter V, § 20) that a Fourier series can also diverge at every point. Thus, the problem 
of convergence of trigonometric series requires serious investigation. 

§ 20. Fejér's lemma 

The theorem of § 19 on the tending to zero of the Fourier coefficients is a particular 
case of the following general result, due to Fejér[13. 

FEJÉR'S LEMMA.f Iff(x) e L has a period 2π andg(x) has a period 2π and is bounded 
then 

π n n 

lim jf(x)g(nx)dx = -^- f /(*)</* · f g(x)dx. (20.1) 
—n —n —n 

Here n -> oo, assuming any values, not only integers (supposing g{x) = cos* or 
g{x) = sinx, we immediately see that the assertion concerning Fourier coefficients is 
true). 

t This lemma can be omitted on a first reading. It is only used in Chapter XIII. 
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For the proof of Fejér's lemma, let us note first that if for any ε > 0 it is possible 
to find φ (x) such that 

J I/O) - <p(x)\dx < ε (20.2) 

and if for <p(x) equality (20.1) has already been proved, then it is also true for / (x) . 
In fact, we have for any n 

j f(x)g(nx)dx — j cp(x)g(nx)dx < Με, (20.3) 

where M is the upper bound oïf(x) in [— π, π]. Moreover, if (20.1) is true for φ(χ), 
then N is found such that 

π π π I 

<p(x)g(nx)dx — - — (p(x)dx g(x)dx\ < ε for n > N. (20.4) 

Finally, it follows from (20.2) that 

71 71 71 71 

— f(x)dx g(x) dx - — (p{x)dx g(x)dx 

n 

g(x)dx 
2π 

Therefore, from (20.3), (20.4) and (20.5) 

n π 7i 

f(x)g(nx)dx - — f(x)dx g(x)dx 

< εΜ. (20.5) 

< (2M + 1)ε (20.6) 

for any n > N. Since ε can be as small as desired, (20.1) follows from (20.6). 
Since the class of step-functions is everywhere dense in the class of functions fe L 

(see Introductory Material, § 21), then on the basis only of what has already been 
proved we see that it is sufficient to prove equality (20.1) for step-functions. But this 
is also easily proved for them, since the interval [ — π, π] is divided into a finite 
number of intervals in each of which f(x) is constant; then ifôj is such an interval 
f(x) = Cj in it and k is the number of intervals dj9 equality (20.1) takes the form 

k Ç k 1 Γ 
lim £ cj g(nx)dx = £ Cjôj — g(x)dx (20.7) 

Ôj —71 

it will be proved if we will satisfy ourselves that for any interval δ 

ô 
lim g(nx)dx — —— g(x)dx. 
n->oo J 2π J 

(20.8) 
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Let δ = (a, b). We have — π < α < ό < π . It must be proved that 

b π 

lim y — — J g(nx)dx = — j g W ^ , (20.9) 

a — n 

taking into account that \g{x)\ < M and g(x) is periodic with period 2π. 
For this purpose we will note first of all that 

nb 

- a J n(b - a) J 
g(t)dt. (20.10) 

Let m1 and m2 be integers (each of them can be positive, negative or equal to zero) 
such that 

ΊΤΙΛ · 2π Κηα < ta, + 1) 2π, 1 

> (20.11) m2 · 2π < nb < (m2 + 1) 2π. J 
Since 

nb mi - 2π nb na 

jg(t)dt= j g(t)dt+ j g(t)dt- j g{t)dt (20.12) 
na mi · 2π ηΐχ ·2π m\ · 2π 

and the range of integration of the last two integrals for formula (20.12) does not ex-
ceed 2π, then 

nb 2 Ttm2 

j g(t)dt - J g(t)dt 
na 2nm\ 

< 4Μπ, 

Moreover 
2nmi 

j g(t)dt = (m2 -mi) jg(t)dt 

(20.13) 

(20.14) 
2nm\ 

because of the periodicity of g(f). From (20.13) and (20.14) this means that 

I nb π I 

j g(t)dt - (m2 - m 0 j g(t)dt\ < 4Μπ. 
I na —π | 

But from (20.11) 

(m2 — mx — 1)2π < n(b — a) < (m2 — m1 + 1)2π, 
and therefore 

n(b - a) = (m2 - m1 + θ)2π, where | θ | < 1. 

In other words, 
n(b -a) 

m2 — m1 = Θ, 

(20.15) 

2π 
(20.16) 

and therefore from (20.15) and (20.16) 

nb 

n(b - a) J * < ' > Λ - ^ - Sg(t)dt+^(b^ lg{t)dt < 
ΑΜπ 

n(b — a) 
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Hence it follows that 
na n 

iz^ä)-ίg(t)dt=-L· Sg(t)dt 
rib —n 

and taking into account (20.10) we see that (20.9) is proved and thus the proof of the 
lemma is concluded. 

§ 21. Estimate of Fourier coefficients in terms of the integral modulus of continuity 
of the function 

We have seen in § 19 that for any summable function f(x) the Fourier coefficients 
an, bn tend to zero as n -► oo. However, sometimes the knowledge of this one fact is 
insufficient and the rate at which it tends to zero should be estimated. 

Let us recall that in Introductory Material, § 25 we defined the concept of the integral 
modulus of continuity œ1(ô,f) for f(x) and we proved that for any feL we have 
^! ( (3 5 / )^Oaso->0. 

Let cn be complex Fourier coefficients of the function f(x), i.e. 
In 

Cn = ~2^ /f^e~inxdx (* = 0, ± 1, ±2, . . . ) . 
o 

By substituting x + π/η for x we can write 
In 

(21.1) 

= --έ-/4 + )̂̂ ^λ"· (21.2) 
0 

Adding (21.2) and (21.2) and dividing by two, we obtain 
In 

c" = i/[/(x)-/(" + Î)]e""'^ 
whence In 

\Cn\ < i-Jk(*+7)-H*<i-.(T·/)· 
Thus for complex Fourier coefficients of the function f(x) we have 

kJ <ift ,1("7'/) {U= ±1' ± 2 ' · · · ) · <21·3) 
In the case of real Fourier coefficients, arguing in just the same way we have 

ΚΚ-^-ω '(τ·')· 
(» = 1,2,...). 

M <!£■»> {τ-ή' 

(21.4) 
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Formulae (21.4) give new evidence of the fact that the Fourier coefficients of any 
f(x)eL tend to zero but they also permit the rate of this tendency to be judged in 
terms of the properties of the function, since, roughly speaking, the "better" the 
function is, the more rapidly its integral modulus of continuity tends to zero. 

If f{x) is periodic and continuous in [— π , π ] , then from the definition of the 
modulus of continuity (see Introductory Material, §25) we immediately conclude that 

o>i(<5,/) <ω(<5, / ) ·2π , 

and therefore for continuous/(x) we have 

\an\ <ω 

\bn\ <co 

G4 
£4 

(« = 1,2, . . . ) . (21.5) 

§ 22. Fourier coefficients for functions of bounded variation 

Let/(x) be a function of bounded variation in [0, 2π]. If Fis its complete variation 
in [0, 2π], then we have 

2n \ / π \ / nr\ 
< V. (22.1) 

But by arguing as in § 21 we have 
In 

^xiJK*^)-™ 
In 

™<^!HX+T)-'V> 

dx, 

dx, 

and since, because of the periodicity off(x), we have for any k 
In In 

j\f(X + k^)-f(X + {k-l)^)\äX=\\f(X+^-)-f(X) dx, 

then it is also possible to write 

In 

0 

Adding all such inequalities for k = 1, 2 , . . . , In and then dividing by 2« and taking 
into account (22.1) we find 

In M<^L-jvdx = i (22.2) 
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and similarly 

Ι * . Κ ^ Γ · (22-3) 
In 

Hence we conclude: for any function of bounded variation 

a» = ° (τ) ' *■ = ° (1) ( 2 2 · 4 ) 

(for the notation 0(1/n) see Introductory Material, § 11). 
If it is required that apart from being of bounded variation/(x) is also continuous, 

then the question arises whether it is not possible to better this estimate? We will 
prove that this is not so in Chapter II, § 2). 

§ 23. Formal operations on Fourier series 

We have seen (see § 11) that the trigonometric system is complete in L, i.e. two 
summable functions can possess identical Fourier series only if they are equal almost 
everywhere. Thus a Fourier series, even if it is not convergent, is nevertheless closely 
connected with only one function. We will now demonstrate that it is possible to carry 
out just the same operations on divergent Fourier series as on series convergent to 
those functions of which they are the Fourier series. 

(1) Addition and subtraction of Fourier series. If we have to construct the Fourier 
series of the sum or difference of two functions, then it is sufficient to add (or sub-
tract) the Fourier series of these functions. Indeed, if 

n= + co 

f(X)~ Σ cynx 

« = — 00 

and 
rt= + 00 

g(x) ~ Σ yneinx, 

then 

/(*) ± g(x) ~ Σ (c» ± Yn)einx, 
n= — oo 

since 

-^ j [f(*)±g(x)]e-inxdx 

= ~ϊπ\ f^e~inXdx ± -^ j g(x)e~inxdx = cn± 7n* 

Thus if the Fourier series were written in a real form, we should be satisfied that if 
an and bn are the Fourier coefficients for/(x) and cn and dn are the Fourier coefficients 
for g(x), then forf(x) ± g(x) the coefficients have the form an ± cn and bn ± dn. 



FORMAL OPERATIONS ON FOURIER SERIES 73 

(2) Multiplication by a constant. It is immediately evident that if 

W= - f 00 

/ ( * ) ~ Σ c«einx> 
n= — oo 

then 

« = — oo 

where Ä: is any constant. The proof is carried out just as in the preceding case. 

(3) Fourier series for f(x + a). If a is any constant, then from 

/(*) ~ Σ cnénx 

it follows that 
f(x + a) ~ £ (cne

in0i)einx ~ £ c„ein(*+a). 
Indeed 

π 7t 7t 

—- ( f(x + a)e-inxdx = — f f Wer*«-»dt = β ' " - ^ - f f(t)e-""dt. 

— π —π —π 

Therefore the Fourier series fo r / (x + a) has just the same form as if we substituted 
x + a for Λ: in the Fourier series for / (x) . 

The reader can easily satisfy himself that this is the result if the Fourier series is 
given in a real form. 

(4) Fourier series for f (x) eimx where m is an integer. We have 

f{x)émx~n^cn_meinx, 

since 

—π —π 

Hence it again follows that the Fourier coefficients are determined just as if we 
had operated directly with the series as with a convergent one; in this case we would 
have 

w= + oo n= + co k= + co 

f(x)eimx = X cne
inxeimx = £ cne

iin+m)x = £ ck_meikx 

n = — oo « = — o o k^ — oo 

(5) Fourier series for f (x). If 
f{x)~Σcnein^ 

then 

7(χ) = Σ^ίηΧ, 

which is verified directly from the Fourier formulae. 

(6) Fourier series for a "convolution'9. It is given that / (x) and g(x) are two periodic 
functions, 

f(x)eL[ — π, π] and g(x)eL[ — π, π], 
4 Bary I 
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Let us consider the product / (x + t)g(t). If no additional limitations are put on 
fix) and g(x), then it might appear to be a non-summable function of the variable t. 
But we will prove, following Young133, that this product for almost all x is a summable 
function of tin [— π, π]9 and supposing 

:*)= 2^- j fix + t)g(t)dt9 (23.1) ßC 

we have Q(x) e L [0, 2π]. This function Q(x) is known as the convolution for fix) and 

It is sufficient to consider the case when/(x) > 0 and g(x) > 0. 
We assume 

X 

—π 

Then the function 
π π Γ" x - î 

/ [f(* + f) - *"(' - »)]«(0Λ = / dt I I f{t + u)g(t)du 
—π —π L—π J 

exists and is finite for any x. We will suppose that 

[fit + u)g(t), if fit + u)git) < M, 
fit,u,M) , M j .f f(t + u)g{t)>M_ 

We have 
7i x n x 

j dt j fit + u)git)du = J dt lim J fit, u, M)du 
—π —n —π Μ->αο — π 

7i x x π 

= lim j dt j f(t, w, M) du = lim j du j f(t, w, M) dt 
M->oo —7i —7t M->oo — n — π 

x 7t 

= j du lim / / (* , u, M) dt. (23.2) 
— 7t Λ / - > 0 0 — 71 

The limit lim f /(f, w, Af) dt might seem to be equal to + oo, but because of the 

equality (23.2) this can occur only for points of some set of measure zero. At those 
π 

points, where it is finite, it equals j fit + u) git) dt. 
— 71 

Thus we have proved that the convolution Q(x) is almost everywhere defined and 
summable. Now we will express the coefficients of its Fourier series in terms of the 
coefficients of the series for / (x) and g(x). 

If 
fix) ~ Σ *.eta, 

sM-Z^"·*. 
then the Fourier coefficients μ„ for Qix) have the form 

μη = cnd_n. (23.3) 



)e~inxdx ) dt 
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Indeed 
π π ( π \ 

μη = -^\ QW<r"dx = JL j U - jf(x + tMt)dt\ 
—π —π \ —-. 

Changing the order of the integration, we obtain 

π / π 

—n V — π 

n f n \ n 

= ~L· j 8(t) \h / fV>e~ln{Z~" dz \dt = ^ / g(t)eintcndt = c„d_n. 
—π \ —n ) —n 

(Changing the order of integration is valid here, since according to Fubini's 
theorem (see Introductory Material, § 18) such a change can always be carried out 
for non-negative summable functions, but e~inx = cosnx — i sinnx, and cosnx and 
sinnx change sign only a finite number of times in [—π,π], therefore the integrals 
under consideration reduce to those for which the rearrangement of the order is 
valid.) 

T h u s ßW-Σ^Λ (23·4) 
It is appropriate to note here that iff(x)eL2 and g(x)eL2, then £ \c„\2 < +00 

and Σ I dn I2 < + 00, and therefore ]T | cnd_n \ < + 00. Now we will show that under 
the given conditions Q(x) is continuous. For this we first partition g(t) into two terms, 

π 

g(t) = gi(t) + £2(0 so that g±(t) is bounded and j g\(t)dt < ε2, where ε > 0 is 
given. We have -« 

π 

Q(x + h)~ Q(x) = - ^ j [f(x + t + h)-f(x + t)]gi{t)dt 
—π 

π 

+ -^ j [f(x + t + h) -f(x + t)]g2(t)dt = h + l2. 
—n 

If ki(01 < M (0 < t < 2π), then 

M r 
, 7 l l < 2 ^ J l/(* + ' + * ) - / ( * +01Λ 

—π 

Mr M 
= 2^ J I/O + h) -f(t)\ dt <—a>1(ö,f) 

—π 

for 0 < I h I < à, where ω1 (<5,/) is the integral modulus of continuity of the function 
f(x) and signifies that Ix can be made as small as desired, if δ is sufficiently small. 
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For I2 we find that 

1/21 < ~L· J $lf(x + ' + A) ~ / (* + W2dt J îa(f)dt <^l I f \ t ) du 
* — π * — π * — π 

Thus, I Q(x + h) — Q(x)\ can be made as small as desired, if h is sufficiently small. 
We will now remark that since Q(x) is continuous and the series (23.4) converges 

absolutely and uniformly, then this series by virtue of the theorem in § 12 converges 
to Q(x) at every point. In particular, we derive from this, by supposing x = 0, 

0(0) =~L · ίf{t)g{t)dt=isy**-*· (23,5) 

(7) Fourier series for a product. Let 

n= + oo n = + co 

/ ( * ) - X c,ito, g(x)~ Σ d«e inx 

We assume t h a t / ( x ) e L 2 and g(x)eL2. Then f(x)g(x)eL. 
Supposing 

f(x)g(x) - Ύ yne
inx, 

we will show that 
k= + oo 

7n= Σ Ckdn-k- (23.50 
k= — ΟΘ 

In order to succeed in doing this, we note that 

π 

Y* = 'in J flà8<àe~lnxdx> 
and therefore, supposing 

A(x) = g(x)e-inx, (23.6) 
we have 

7n = ~2n \ f ^ ) h ( ^ d x -

If we denote the Fourier coefficients of h(x) by μΠ, then according to formula (23.4) 

7n= Σ C*/*-fc· (23·7) 
k= — 00 

But since on the basis of item (4) of this section it follows from (23.6) that 

ßk ~ dk+n, 
t h e n *- + «, 

/ : = —00 

and this is formula (23.5') which we wanted to prove. 
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Note. We will recall that for numerical series the following theorem is valid: if 
Wo + «i + ·** + un + *·· absolutely converges and its sum equals w, and v0 + vx 

+ · · · + ! > „ + · · · absolutely converges and its sum equals v, then the series 

u0v0 + (u0v± + vQux) + ··· + (u0vH + «itV-1 + ··* + Wo) + ··* 

absolutely converges and its sum is uv. 
It is not difficult to prove that if we established a series for the product/(x) g{x) 

using this formula for the multiplication of the series, then the coefficients of this 
series would be expressed by the formula (23.7), i.e. we see that Fourier series can be 
treated here in the same way as if they converged absolutely. 

Conclusion. If we have £ \cn\ < + oo and £ \dn\ < + oo, then £ |yn| < + oo, 
since it is known that the product of two absolutely convergent series converge ab-
solutely; moreover, Σ\γη\ < £ |c„| £ \dn\, since in an absolutely convergent series 
it is possible to rearrange its terms, without altering its sum. 

Later (see § 61) we will see that absolute convergence of a trigonometric series in 
[— π, π] occurs when and only when the series of the absolute values of its coefficients 
converges. Therefore we have 

THEOREM. If f(x) and g(x) expand into absolutely convergent series, then their 
product also possesses this property. 

(8) Integration of Fourier series. Let f(x) be a periodic summable function, and 
F(x) its indefinite Lebesgue integral 

X 

F(x) = C+ j f(t)dt. 
o 

We set ourselves the task of expanding F(x) into a Fourier series, if the series for 
f(x) has already been obtained: 

/ ( * ) - Σ c«e,ttX· 
We note above all that 

In 
F(2n) - F(0) = j f(t) dt = 2nc0, 

o 

and therefore if c0 Φ 0, then F(x) will not be periodic. Therefore, we shall consider 
the auxiliary function 

Φ(χ) = F(x) - c0x. (23.8) 
Since 

2π+χ 

Φ(χ + 2π) = F(x + 2π) - c0(x + 2π) = C + j fit) dt - c0x - c02n 
o 

x 

= C + j f{f) dt - c0x = Φ(χ), 
0 

then Φ(χ) is already periodic. It is absolutely continuous as is also i^x) and 

&(x) = F*(x) - Co =f(x) - c0 

almost everywhere. 
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Let us find the Fourier coefficients for Φ(χ); we have for n φ 0 

In 

Cn = — I 0(x)e~in*dx 

o 
2π 2π 

o o 

(integration by parts is valid because of the absolute continuity of Φ(χ)). Since 
Φ(2π) = Φ(0), then we obtain immediately 

We can now write 

Cn = - ^ 5 (n = ± 1 , ± 2 , . . . ) . (23.10) 

Φ(Χ) ~ Co + Σ ^ ei"*> ( 2 3 · Π ) 

where the symbol Σ ' denotes that the term with n = 0 is omitted. 
From (23.8) and (23.11) we conclude that 

F(x) - c0x ~ C0 + £ ' -^- einx. (23.12) 

It is clear that if we were to integrate completely formally the series o(f), then we 
would obtain this same series (23.12) for F(x). 

If the series forf(x) were written in the real form 

f(x) ~ Ύ + Σ (an cosnx + K sinwx), 

then we would obtain 
a0 — —bn cosnx + an sinnx 

F(x) - — x ~ C + X . 

(9) Differentiation of Fourier series. Fourier-Stieltjes series. LetF(x) be absolutely 
continuous in [0, 2π] and have a period 2π. If 

F(x) ~ Σ c»einx, 
then for its derivative we have 

F,{x)^YJincne
inx. (23.13) 

Indeed, it is sufficient to apply formula (23.10), assuming tha t / (x) = F'{x). 
Thus the Fourier series for the derivative of F(x) is obtained in the same way as if 

we differentiated the Fourier series for F(x). 
Similarly, if 

F(x) ~ ~~j—l· Σ (an cosnx + bn smnx), 

then 
F'(x) ~ Σ n(K cosnx — an sinnx). 
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We note, however, that these formulae are valid only if F(x) is absolutely continuous, 
otherwise it is not an indefinite Lebesgue integral of its derivative, even if this deriv-
ative exists and is summable. 

In the case when F(x) is a function of bounded variation, then, supposing 

e~inxdF (n = 0, +1, . . . ) , (23.14) = - f 
2π J 

where the integral in formula (23.14) is a Riemann-Stieltjes integral (see Introductory 
Material, § 16), we write 

J F ~ £ c . e l , , x (23.15) 

and this series (23.15) is known as the Fourier-Stieltjes series for dF. 
If we assume 

φ(χ) = F(x) - c0x, 

then Φ(χ) is also of bounded variation and is periodic too. Let Cn be the Fourier 
coefficients for Φ(χ); then for n φ 0, integrating by parts, we find 

Cn = — I Φ(χ)β~ίηχαχ = — — \ β-ίηχάΦ = -τ^, n 2π J v ' 2π ι n J in 
o o 

since άΦ = dF — c0dx. Therefore, if 

φ(*)~θ) + Σ ' £ « ^ 
where the symbol £ ' indicates that the term at n = 0 is omitted, then 

Φ(χ) - Co + Σ ' -^- e ^ 

and 

F(JC) - C0x - C0 + Σ ' - ^ e1«. (23.16) 

From formulae (23.15) and (23.16) it follows that the Fourier-Stieltjes series for dF 
agrees accurately as regards the constants with the result of differentiating the Fourier 
series for F{x) — cQx. 

§ 24. Fourier series for repeatedly differentiated functions 

Let us assume that k > 2, the function f{x) has derivatives up to the order k - 1 
inclusive and the derivative of the (k - l)th order is absolutely continuous; then the 
kth derivative is summable. Denoting the Fourier coefficients for/(k)(;c) by c*},we 
find from formula (23.10) that 

in (in)2 c{k~ -1) = 
rc*> 

in 
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etc., and finally 

(»I)* 

Hence it is immediately clear that the higher the derivative of the function is, then the 
more rapidly do its Fourier coefficients tend to zero. 

In particular, if/(fc)(x) is defined and summable almost everywhere, then c{P tends 
to zero as n -> ± oo, just as the Fourier coefficients of a summable function and then 

cn = o(-±r). (24.1) 

Such an estimate does of course occur if the Fourier series has a real form, i.e. 

an = 0(~^) and bn = 0 w ) · ( 2 4 · 2 ) 

§ 25. On Fourier coefficients for analytic functions 

Lctf(x) be a function of a real variable, analytic in the interval [— π , π] and periodic 
with period 2π. Let us estimate its Fourier coefficients. We will show that they de-
crease at the rate of a geometric progression; more exactly, it is possible to find Θ, 
0 < Θ < 1, and a constant A such that 

\cH\<A0W (n = 0, ± 1 , ± 2 , ...) (25.1) 
or in a real form 

\αη\<Αθη and \bn\<Adn (« = 0 , 1 , 2 , . . . ) . (25.2) 

The numbers Θ and A vary, generally speaking, with the function f(x) being con-
sidered. 

In order to prove this, we note first of all that because of the conditions imposed on 
f(x), we have 

/ ( - π ) = / ( π ) and / < « ( - π ) = / < » ( π ) (fc = 1, 2, . . . ) . 

In estimating the Fourier coefficients for functions possessing k derivatives, we 
have seen (see § 24) that 

1*1 = ^ 1 ^ 1 . 

where cjj° are the Fourier coefficients of/ ( k )(x). But 

n 

)e~inx dx. 

Therefore, if the maximum modulus offik)(x) is denoted by Mk9 then 

Mk 
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But for the numbers Mk, this inequality holds 

Mk<Bkk\ (k= 1 ,2, . . . ) , 

where B is a constant.f Therefore 

Bkk\ /Bk^k 
B*kl (Bk\K , „ „ 

Let us choose p such that 

(25.3) 

y < l , (25.4) 

and suppose that 

0! = — . (25.5) 

The number k in formula (25.3) is at our disposal, since the function/(x) possesses 
derivatives of all orders. Therefore, for given n and/? we can find an integer k from the 
condition , , 

P 

If this is so, then \n\ > pk and taking into account (25.3) and (25.5) 
k ΘΊ+1 0i"l;p 

/B\k 0ί+1 fl"i'p 

(25.6) 

whilst by virtue of (25.4) and (25.5) we have θ1 < 1 ; denoting by 0 the number which 
satisfies the condition 

Θ[ΙΡ < 0 < 1, (25.7) 
and supposing 

1 
A 0 X ' 

we have from (25.6) and (25.7) 

| c , | <A&"\ (Λ = 0 , 1 , 2 , . . . ) , 

and this is what was required to be proved (see (25.1)). 

t Indeed, from the assumptions made regarding / ( * ) , it follows that it is possible to expand it 
analytically in some plane region containing the interval [—π,π]. If we denote by C an arbitrary 
rectifiable contour enclosing the interval [—π,π] and lying in the region where/(z) is analytic, then 
according to Cauchy's formula 

J W Uli J (z-x)k^aZ' 

If the length of the contour C is /, max \f (z) | = M and the minimum distance of the points z on C 
c 

from the points x in [— π,π] equals <5, then 

|/(*>(*)| < A f / - ^ ^ ! - ~ i T < Bkk\t 

if B is chosen so that B > i/o and B > ΜΙβπδ2. 

4a Bary I 
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If we take a Fourier series in its real form, then the inequality takes the form 

\αη\<Αθη and \οη\<Αθη (« = 0 , 1 , 2 , . . . ) . 

The reverse statement is also true, namely: if for a function f(x) the Fourier co-
efficients satisfy the inequality (25.1) where A is a constant and 0 < Θ < 1, then/(x) 
is an analytic function in the interval [— π, π]. 

Indeed, the series £ | cn \ < + oo and we then have 

« = + 00 

n= — oo 

Differentiating this equality k times, where k is any number, we obtain 

n = + oo 

fW(x) = £ c„(/)* nk einx. 
n= — oo 

The differentiation term-by-term is valid, since the series obtained converges ab-
solutely and uniformly because 

\cn(i)
knk\ <A&n\\n\\ 

and since A: is a constant, then the convergence of the series ]T 0(w) | nk | follows if 
only from the application of Cauchy's test to it. 

Thus,/(x) possesses derivatives of all orders. But, moreover, 

00 

Mk = max | / ( k ) ( x ) | < 2A £ θη nk. 

Hence it is possible to deduce the validity of the inequality 

Mk < Bkk\ 
for some B. Indeed 
00 00 00 

f dxxkdx = - YJ f e^jc*"1 dx = ~ ' f θχ xk~2 dx = ·.. = ( - 1) 

0 0 0 

which gives the desired inequality. 
Now let x0 be any point in [— π, π]. Let x be any other point for which 

1 
I* - *ol < -g-

Using Taylor's formula with a remainder in a Lagrange form 

/(fc)(*o) ,_. .. , t . f(n)(*o + ö'(x - xo)) 
fc=~0 

where 0 < 0' < k. But 

Bnn\ 

ln*fl* 

st \ sr J v-*o7 f u , 7 νΛο T- ^ νΛ -^ου , ,η 

f(x) = . Σ jt! ( Χ " Χο) η\ ( Χ " Χο) 

; ( * - *<,)" 
77! 

η[ (χ-χ0γ = (Β\χ-χ0\γ. 
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Because | x — x0 \ < l/B the right-hand side tends to zero as n -> oo and this means 
that 

/ ( * ) = Σ TT-2- (* - *o)fc, 

i.e./(jc) expands into a Taylor series in the neighbourhood of the point x0; but x0 

is any point of [— π, π], which means thaXf(x) is an analytic function in [— π, π]. 

§ 26. The simplest cases of absolute and uniform convergence of Fourier series 

We will start with the following simple observations. Let us consider a trigono-
metric series 

an °° 
~7Γ + Σ (a» cosnx + bn sin/i*). (26.1) 

If 

Σ(Ι^Ι + Ι*»Ι)< + °°> (26·2) 

then it converges absolutely (and uniformly) in [—π,π]. 
It is useful to note (we have already referred to this in § 23) that the convergence of 

series (26.2) is not only sufficient but necessaryf for the series (26.1) to converge 
absolutely in [ — 71, 7t\. 

It now remains to consider some concrete cases when the Fourier series converges 
absolutely and uniformly. If this occurs, then this series has as its sum the function 
f{x) for which it serves as Fourier series (see § 12). In particular, it follows that 

Iff(x) possesses a summable derivative of the second order, then its Fourier series 
converges uniformly tof{x). 

Indeed (see § 24) in this case 

fl"=°(i)' b° = °{^)-
Later we will see that the requirements imposed on/ (x) are too limiting and we can 

obtain uniform convergence for considerably more general assumptions, but it is 
expedient to mention this theorem, since even in this form it can be useful. 

We will mention here yet another simple but important case, where the absolute 
and uniform convergence of a Fourier series is readily detected, namely: 

THEOREM. If F(X) is absolutely continuous and its derivative F'(x) =f(x) is a 
fuhction with an integrable square, then the Fourier series of F(x) converges absolutely 
and uniformly. 

Indeed, in this case, if the Fourier coefficients for /(x) are denoted by an, bn, then 
£ (a2

n + bl) < +00 (see § 13) and according to formula (23.10), denoting the Fourier 
coefficients for F(x) by An and Bn, we have 

| 4 J = l·^- and \Bn\= \^\, 

t In § 61 it will be shown that for the convergence of (26.2) the absolute convergence of (16.1) is 
sufficient not in the whole interval [— π , π ] , but only in a set of positive measure. 
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and therefore 

Ι Λ Ι < 2 \h»\2+ 2-^2- a n d \βη\ < yf l ' + y ~ 2 - · 

Consequently 

5^(14,1 + |2»„|) < + oo, 
and the theorem is proved. 

In § 3 of Chapter IX, this theorem is generalized, so that instead of the hypothesis 
f'(x) cz L2 we consider the case/ '(x) cz Lp(p > 1) and we show that the result still 
holds. A number of considerably stronger theorems on the absolute convergence of 
Fourier series will also be given there. 

A very particular case of the given theorem is given by the following example; if 
F(x) is represented by a continuous broken line, then its Fourier series converges 
absolutely and uniformly. 

In fact, in this case F'(x) is a function which possesses a derivative everywhere 
except for a finite number of points and this derivative/ (x) consists of a finite number 
of steps, and is therefore bounded, and consequently/2 (x) is moreover summable. 

§ 27. Weierstrass's theorem on the approximation of a continuous function by 
trigonometric polynomials 

Let / (x ) be a continuous function in the interval [ — π,π] a n d / ( — π) = / ( π ) . If 
we expand it periodically with period 2π, it will be continuous along the whole axis 
Ox. We define a function with period 2π as a continuous periodic function when and 
only when it remains continuous after its periodic expansion; i f / (x) is continuous 
only in a certain interval of length 2π, but at its end points assumes different values 
and therefore becomes discontinuous if it is expanded periodically (see Fig. 4 on 
page 50), then we will not call it a continuous periodic function. 

After this definition we can express a theorem. 
WEIERSTRASS'S THEOREM. For any continuous periodic function f(x) and for any 

ε > 0 a trigonometric polynomial T(x) can be found such that 

\f(x) - T(x)\ <ε ( - oo < x < + oo). (27.1) 

A large number of proofs of this important theorem exist. We will refer here to one 
of them. 

Because of the continuity off(x) in [— π, π] it is possible to find a δ such that 

l / (*0 -fix") I < | for \x' - *" | < δ, (27.2) 

where x! and x" are any two points in [— π, π]. 
Let us divide the interval [— π, π] into m equal parts, choosing m so that 2n\m < δ. 

We will denote by ψ(χ) the broken line coinciding with/(x) at the points k π/m, where 
k = 0, + 1 , . . . , ± m , and will assume that ψ(χ + 2π) = ψ(χ) for any x(— oo < x 
< + oo). From (27.2) it is clear that 

l / ( * ) - V ( * ) l < y for I * * - * " ! <<5 
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and because of the periodicity of the two functions this is also true for any x, 
— 00 < X < + 00 . 

Since ψ (x) is a broken line, then according to the proof at the end of § 26 its Fourier 
series converges absolutely to it. Therefore denoting the sum of the first n terms of 
its Fourier series by Sn(x), it is possible to choose n sufficiently large for 

ε 
\ψ (x) — S„(x)\ < — for - oo < Λ; < + oo. 

It is clear that Sn(x) is a trigonometric polynomial and denoting it by T(x) we see 
that the theorem is proved. 

§ 28. The density of a class of trigonometric polynomials in the spaces LP (p > 1) 

Weierstrass's theorem which has just been proved can be considered as evidence 
of the fact that the class of trigonometric polynomials is everywhere dense in the 
space C of continuous periodic functions. 

It follows from this that this class is everywhere dense in any space LP(p > 1). 
Indeed, if f(x)eLp, then for any ε (see Introductory Material, § 21) it is possible 

to find a continuous φ(χ) such that 

1 1 / - <P\\LP < e , 

and on the other hand it is possible to find a trigonometric polynomial T(x) such that 

\<p(x) - T(x)\ < 7Γ—, 0 < x < 2π, 
Lit 

and therefore 

| | 9 9 - T\\LP <e 

(it is assumed that the norm is calculated in an interval of length 2π). Therefore, 
according to Minkowski's inequality (see Introductory Material, § 10) 

| | / - 2 l L P < 2 e , 
and the theorem is proved. 

§ 29. Dirichlet's kernel and its conjugate kernel 

An important role in the study of the convergence of trigonometric series is played 
by the functions 

1 
Ai(*) = y + cos* + ··· + cosnx (29.1) 

and 

Dn(x) = sin* + ··· + sinnx. (29.2) 
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The function Dn(x) can be written thus: 

sin 
Dn(x) = 

K) 
(29.3) 

2 sin 

Indeed 

X X n X 
2 sin — Dn{x) = sin — + £ 2 sin — coskx 

2 2 k==i 2 

sin 

= sin 

y + J ) [sin (* + y ) * - sin (* - y ) x 

whence after dividing by 2 sin(x/2), formula (29.3) is obtained. 
Expression (29.3) is called the Dirichlet kernel, since Dirichlet first used it in the 

study of the convergence of Fourier series (see § 31). 
Similarly Dn(x) is called the kernel conjugate to the Dirichlet kernel; it takes the 

form 

Dn(x) = 
cos — cos 

2 
(n + j)x 

(29.4) 

2 sin 

which can also be easily verified directly. 
From formulae (29.3) and (29.4) it is immediately evident that if x φ 0 (mod 2π), 

then 
1 

and 

\DH(x)\ < 

\Dn(x)\ < 

sin 

sin 

(29.5) 

(29.6) 

We now note that the function (sinx)/x decreases in the interval (0, π/2) (which it 
is possible to prove by simple differentiation) and therefore 

sinx 
sin y 

> 
(f) » 

This means 
sin* 2 π 

— > — for 0 < x < —. 
x π 2 

(29.7) 
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Using (29.5) and (29.6) we obtain 

and 

\Dn(x)\ < -^ for 0 < | * | < π (29.8) 

\Dn(x)\ < - for 0 < |x | < π . (29.9) 

We will use these formulae frequently later. Most often it will be sufficient to estimate 

Dn(x) = O (-) and Dn(x) = O (-) as x -> 0; (29.10) 

sometimes it will be important that if δ < \x\ < π, then 

\Dn(x)\<-^- and | ^ W I < ~ . (29.11) 

Because of the periodicity of Dn{x) and Dn(x) it is also possible to say that (29.11) 
holds if δ < x < 2π — δ. 

§ 30. Sine or cosine series with monotonically decreasing coefficients 

Before turning to a study of the cases when the problem of convergence of the 
trigonometric series requires close examination, we will consider some cases where it 
is very easy to judge the convergence. 

Let us begin with series of the form 

Q>c\ °° 
-ΖΓ + Σ an cosnx (30.1) 

2 / I = l 

and 
00 

Σ b„sinnx, (30.2) 

i.e., series consisting of either cosines only or sines only. We will consider firstly the 
important case when these series possess monotonically decreasing coefficients tending 
to zero, which can be denoted thus: 

an[0 and bn[0. 

In studying these series we will use the estimates of Dn(x) and Dn(x) given in § 29 
and Abel's lemma (see Introductory Material, § 1). This permits us to prove the theorem. 

THEOREM 1. Ifan j 0, then the series 

——h 2J an cosnx 

converges everywhere apart, perhaps, from the points x = 0 (mod 2π); at any δ > 0 
it converges uniformly in δ < x < 2π — δ. 
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Ifbn I 0, then the series ^ , . 
J ψ %bnsmnx 

converges everywhere', at any δ > 0 it converges uniformly in δ ^ χ Κ2π — δ. 
Indeed, supposing in Abel's lemma that 

w„ = an, vQ = — and vn(x) = cosnx (Λ = 1, 2 , . . . ) , 

we have 
Fn(x) = Dn(x), 

and since the uniform boundedness of the functions Dn(x) in δ < x < 2π — δ 
follows from formula (29.11), then the series converges uniformly in this interval. 
If 0 < x < 2π, then it is always possible to take δ so small that δ < x < 2π — δ, 
which indicates that the series (30.1) converges at the point x. 

At x = 0, the series (30.1) converges when and only when ]£ an < + oo. 
For the series (30.2), the proof is similar; it is only necessary to substitute un = bn 

and vn(x) = sin«* in Abel's lemma; then Vn(x) = Dn(x) and again the application 
of the inequality (29.11) gives evidence of the uniform convergence of series (30.2) in 
δ < x < 2π — δ, and therefore its convergence at every point, apart from the 
points x = 0 (mod 2π). But at the latter it also converges because all the terms of 
the series equal zero. 

The theorem is completely proved. 
Note. By the generalization of Abel's Lemma (see Introductory Material, § 1) the 

series (30.1) and (30.2) converge uniformly in δ < x < 2π — δ (this indicates that 
it also converges in 0 < x < 2π) and when instead of an j 0 or bn [ 0 we assume only 
that {an} or {bn} is a sequence of bounded variation, an -> 0 and bn -* 0, moreover. 

Let us return to the case of the monotonically decreasing coefficients. It is clear 
that if i Λ J vn 

a„l0 and 2>„ < + oo, 
then the series a0/2 + J] an cos «A: converges absolutely and uniformly in the whole 
interval 0 < x < 2π (and even for — oo < x < + oo). On the other hand if the 
condition £ an < + oo is not fulfilled, then not only uniform but also simple conver-
gence along the whole axis is not possible, since at the points x = 0 (mod 2π) the 
series (30.1) diverges. 

The question of the uniform convergence of the series £ bn sin nx is decided in 
another manner. Here we have. 

THEOREM2. Ifbn[0, then for uniform convergence of the series ^ è „ sinnx in 
[0, 2π\ it is necessary and sufficient that nbn-± 0. 

Necessity condition. If the series (30.2) converges uniformly in [0, 2π], then for 
any ε > 0 it is possible to find m such that 

2m 

J] bnsinnx 
w+l 

< ε, 0 < x < 2π. 

We will let x — n/4m; then for (m + 1) < n < 2m we have π/4 < nx < π/2 and 
therefore sinnx > sin:rc/4 = l/y/l. Consequently, 

I 2m 

-7T- Σ *« < ε ' 



SINE OR COSINE SERIES WITH DECREASING COEFFICIENTS 89 

and since bn decrease monotonically, (l/yj2)mb2m < ε9 i.e., mb2m < y/2s, which 
means that / w è m - > 0 a s m - > o o . The necessity is thus proved. 

Sufficiency condition. We already know that series (30.2) converges uniformly in 
δ < Λ: < 2π — δ for any δ (for the single condition bn [ 0). This means that if we 
prove that the addition of the condition nbn -> 0 implies uniform convergence in 
(— a, a), where a is any number > 0, then everything will be proved. Moreover, be-
cause of the oddness of ûnnx it is sufficient to take 0 < x < a. We will prove 
uniform convergence of the series in 0 < x < π/4. 

Let εη = max kbk. It is known that series (30.2) converges for any x; let us define 

00 
rn(x) = YjbkSinkx. 

k=n 

We will prove that | rn{x) | < Ken in 0 < x < π/4, where K is a constant whence the 
uniform convergence of the series (30.2) in [0, 2π] follows. 

Above all, rn(0) = 0, if x φ 0, then it is always possible to find an integer N such 
that IjN < x < l/(N - 1). If N > n, then we write 

N-l oo 
rn(x) = Σ ** sinfcx + £ bk sinkx = r£}(x) + r™(x). 

k=n k=N 

If N <n, then let ^ ( J C ) = 0 and rf (x) = rn(x). Let us estimate rj,1}(jc) and 
r(

n
2)(x) separately. 
We have, since |sin/:x| < k \x\, 

N-\ N — n 
\rn\x)\ < Σ kb*x < χεη(Ν - n)< — νεη < εη. 

k=n iV — 1 

In order to estimate rf}(x) we consider two separate cases: 
(1) If n < N9 then using Abel's transformation (see Introductory Material, § 1) we 

find 

\i?(x)\ < Σ (** - bk+1) \Dk{x)\ + bN \DM_t(x)\. 
k=N 

But since (see (29.9)) 

I Ä t ( * ) l < — for 0 < | χ | < π , 

then 
2π 

\r™(x)\ < bN < 2nNbN < 2πεη 

because n < N and because of the definition of εη. 
(2) If N < n, then r^(x) = rn(x) and then calculation shows that 

\ru(x)\ = \rf{x)\ <2πεη. 
Therefore 

\r.(x)\ < \r?(x)\ + \rf{x)\ < (2* + l ) e „ , 

which means that the desired inequality has been proved. 
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Note. From the theorem just proved the following conclusion can be deduced 
immediately : 

There exist trigonometric series that converge uniformly in [—π,π] without con-
verging absolutely in this interval. 

In fact let us consider, for example, the series 

hi nlnn ' ( 

Since bn = 1 /(« In n), then n bn -> 0 as n -> oo and moreover bn [ 0. This means that the 
given series converges uniformly in [— π, π], but it does not converge absolutely in 
[—π,π], since otherwise the series^] I [(nlnn) should converge and this series does 
actually diverge.f 

We make this brief comment because very frequently in proving the uniform 
convergence of functional series Weierstrass's criterion (the comparison of the terms 
of a given series with the terms of a convergent numerical series) is used and in this 
case both absolute and uniform convergence is directly obtained. 

In particular, for the trigonometric series £ bn ûnnx, where £ \bn\ < + oo, both 
absolute and uniform convergence occurs in [— π, π], but in the example considered 
this is not so. 

It is even possible to construct a trigonometric series which converges uniformly in 
[— π,π] but which does not possess a single point of absolute convergence in this 
interval (see Chapter IX, § 3). 

In connection with series of the type (30.2), where bn [ 0, it is useful to note yet 
another theorem : 

THEOREM 3. If bn [ 0 and the numbers nbn are bounded, then the partial sums of the 
series 

oo 

Σ bn sinnx 

are all bounded in — oo < x < + oo. 

t From the Lusin-Denjoy theorem which will be proved in §61, it follows that the series (30.3) can 

converge absolutely only in a set of measure zero I because Σ VO* ln n) diverges I . Moreover, it is 
\ n = 2 I 

easily proved that the series (30.3) is not absolutely convergent at any x φ 0 (mod^r). Indeed, if for 
such x we had 

OO I · I 

vn sin/zx 

Σ *—^< + °°' 
n = 2 n l n n then 

n = 2 n l n n 
<C -f co. 

therefore 

vn (1 — cos2«;t) 
Σ Λ < + °°> 

n = 2 n l n n 

00 Λ OO i 

Z cos 2nx ^ 1 
: converges, if x φ 0 (mod π) then the convergence of > — : — would follow 

n=2 nlnn ^ n^2n\nn 
and we would arrive at a contradiction. 

and since
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Because of the periodicity and oddness of all the terms of the series it is sufficient 
to consider the interval [0, π] and since at x = 0 and x = π all the terms become 
zero, then we can confine ourselves to the case 0 < x < π. 

We have the condition 
\kbk\ <M (k = 1,2, . . . ) , 

where M is a constant. Let us suppose 

(30.4) 

(30.5) 

If« < v9 then 

\Sn(x)\ < ]T bk sinkx 

Ifn>v, then 
k=\ 

<fJ\kbk\x <Mxv <Μπ. 
k=\ 

Sn(x) = Σ 6* sinfcx + Σ bk sinfcx = S?(x) + S™(x), 
k=l v+l 

where S^(x) is estimated as in the preceding case, i.e. 

\S?(x)\ <Μπ, (30.6) 

and to S™(x) we apply the corollary of Abel's transformation (see Introductory 
Material, § 1). Remembering (29.9) 

I A , ( * ) I < — for 0 < | χ | < π , 

we find from (30.4) and (30.5) 

\S?(x)\<2bv+1^<2M^^ <2M. (30.7) 

From (30.6) and (30.7) it follows that 

\Sn(x)\ < Μπ + 2M = Μ(π + 2), 

and Theorem 3 is proved. 
COROLLARY. We have for any n and x 

" smkx 
<c, (30.8) 

(30.9) 

where C is an absolute constant. 
Indeed, here we are concerned with the partial sums of the series 

^ ûnnx 

in which bn = 1/«, i.e. bn [ 0 and nbn = 1. 
Series (30.9) plays an important rôle in the many problems of the theory of trigono-

metric series; in § 41, in particular, we will investigate its behaviour in the neighbour-
hood of the point x = 0, since it permits us to obtain certain data on the behaviour 
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of Fourier series for functions of bounded variation at those points where they are 
discontinuous. 

In this paragraph we have considered only a few problems concerning sine and 
cosine series with monotonie coefficients. Chapter X will be devoted to a detailed 
investigation of this class of series. Here instead of referring the reader to Chapter X, 
we prove yet another important theorem concerning these series. 

THEOREM 4. Ifan J 0 and the sequence {an} is convex, then the series 

-^- + fjaJcosjx (30.1) 
Z 7 = 1 

converges everywhere, apart from, perhaps, x = 0 (mod 2π), to a non-negative summable 
function f(x) and is the Fourier series for this function. 

To prove, this, we consider 

Sn(x) = -IT + Σ aj cos jx 
1 7 = 1 

and apply Abel's transformation; this gives 
« - 1 n - l 

Sn(x) = Y(<*J- <*J+i) DAX) + fl»A.(*) = ΣΔα3°Μ + anDn{x), (30.10) 
7=0 y^O 

where Aaj = aô — aj+i. Supposing A1aj = Δα5 — AaJ+1 and again using Abel's 
transformation, we find 

Sn{x) ="tA2aj t Dp(x) + Δαη_ΪΣϋρ(χ) + anDn(x). (30.11) 
j=0 p-=0 p = Q 

An expression of the form 

^ ) = 7 Τ Τ Σ ^ ) (30.12) 
J + A p=Q 

is usually called a Fejér kernel of order j . We will study it in more detail in § 47. Here 
we shall refer to the fact that Kj{x) > 0 for all x (see (47.5)). From (30.11) and (30.12) 
it immediately follows that 

Sn(x) = Σ \j + l)A2ajKj(x) + nAa^K^ix) + anDn{x). (30.13) 
7 = 0 

If x φ 0 (mod 2π), then since an -> 0 the last term of the right-hand side of (30.13) 
tends to zero as n -> oo. Moreover, at x φ 0 (mod 2π) from (30.12) and (29.3) we 
note that Kn{x) always remains finite as n -> oo and nAan_± -> 0 for the convex se-
quences {an} (see Introductory Material, § 3) and therefore nAan_1Kn_1(x) -» 0 as 
n-+co. Hence for x φ 0 (mod 2π) 

f(x) = lim Sn(x) = Σ U + 1 ) Λ 2 * ^ , ( χ ) . (30.14) 
« -> oo 7 = 1 

It is not necessary for us to prove the very existence of the limit, since the con-
vergence of series (30.1) for all x, apart from x = 0 (mod 2π), was established for 
an [ 0, without the hypothesis of the convexity of {an}, in Theorem 1 of this section. 
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Thus, from (30.14) we conclude that the sumf(x) of series (30.14) is a non-negative 
function, because allzPo, > 0 and Kj{x) > 0 for all x. 

It remains for us to prove that the series (30.1) is a Fourier series of / (x) . For this 
purpose we note that because 

f{x) = — + £ a„coswx (30.15) 
* n = l 

and because Λ„ [ 0 the series on the right-hand side of (30.15) converges uniformly in 
(ε, π) for any ε > 0, then 

π π π 

Γ Λη Γ οο Λ β οο Sin 72 β 

f(x)dx =-£ \ dx+Σ«*] ™™*dx = - £ f r - ε) - £ « « · (30·16) 
0 β e 

From α„ j 0 due to Theorem 2, it follows that the series ]T (tf„ sinnx)/n converges 
uniformly in [0, 2π], which means that its sum is continuous in this interval, and 
therefore the series on the right-hand side of (30.16) has a sum which tends to zero 
as ε -> 0. Hence it follows that 

lim [ f{x)dx = ~π. (30.17) 

e 

But since/(x) > 0, then from the existence of the limit on the left-hand side of 
(30.17) the summability oïf(x) in [0, π] follows, and because/(x) is even, this gives 

π η 

j f(x) dx = 2 \ f(x) dx = α0π, 
-n 0 

whence 
n 

a0 = — / ( * ) </x. 

—π 

We will now prove that at any k = 1, 2 , . . . we have 

i Γ 
ctk = — /(x)cos/cxrfx. π J 

For this purpose, multiplying both sides of (30.15) by cos kx and integrating in the 
interval [ε, π], we find 

n n n 

f(x)coskxdx= — cosA:A:rfx+ ^ a „ cos fcx COSH* of* 

π π 

+ #fc COS 2 /CXÎ/X+ £ #„ COS/CXCOS/ÎX J x . (30.18) 
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71 71 

Ase -* 0 each of the integrals f coskx dx&na f cosfcxcosHx^x^ = 1,2, ...k — 1) 
tend to zero. Then ε ε 

71 ?I 

lim COS2Ä:X dx = cos2&xdx = — . 
ε->0 J J % 

ε 0 
Finally 

n 7i 
™ f » f cos(A: + «) JC + cos(« - fc) x 

2^ Λ/ι COS/:JCCOS«XÎ/X = 2u an dx 
n=k+I J n=k+1 J 2 

= Σ an\ 
sin(fc + ri) ε sin (n — k)e 

2{k + n) 2(n - ifc) 
(30.19) 

and arguing as previously, we see that as ε -* 0 the right-hand side of (30.19) tends to 
zero. 

Thus, from (30.18) we obtain as ε -» 0 

/ 

π 
f(x) coskx dx = ak — 

o 

and taking into account the evenness of /(x) 

- - i i/( x) coskx dx. 

Thus, series (30.1) is a Fourier series off(x) and the proof, therefore, is concluded. 
COROLLARY. Since the sequence 1/ln/? {n = 2, 3, . . .) is convex, then from the given 

theorem it follows in particular that: the series 

Σ T^ (30.20) 
is a Fourier series. 

oo 

It is also known that ]£ (s'\ nx)j\v\n is not a Fourier series (see § 40), therefore we 
/i = 2 

see that a series conjugate lo a Fourier series is not necessarily itself a Fourier series. 
Note. It will be useful to us later to know that the partial sums of series (30.20) 

satisfy the condition 
2n 

J" \Sn(x)\dx < C, (30.21) 
o 

where C is an absolute constant. 
Indeed from formula (30.13) we obtain 

S\Sn(x)\dx 

n — 2 In 2π 2π 

<Σϋ+ 1)Λ2α, I Kj(x) dx + ηΔαη_γ f #„_,(*) dx + αη\ \D„{x)\ dx. 
j=0 Ô 0 0 
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2π 

But since ( \Dn(x)\dx < Alun, where A is a constant (see § 35) and 
o 

2π 2π 

Kj(x)dx = — — j - Σ Dp{x) dx = π9 

then 
In 

\ 
\Sn{x)\ dx < π X(y+ \)Α2α^ηΑαη^ 

7 = 0 
+ Aan\nn. 

This formula is true for any an [ 0 forming a convex sequence. Therefore, taking 
00 

into account that for such sequences Σ θ * + ϊ)Α2α3 < + oo (see Introductory Ma-
terial, § 3) we have 7 = 0 

In 

J* \Sn(x)\ dx < Aanln n + B9 
o 

where A and B are constants. For the case we are considering when an = 1/ln«, sup-
posing that A + B = C, we see therefore that (30.21) is valid, i.e. 

In 
! Zî, coskx 

i Ink 

C n 

J A:-] 
</;c < C (« = 1,2, . . . ) . (30.22) 

§ 31. Integral expressions for the partial sums of a Fourier series 
and its conjugate series 

In order to study the question of the convergence of a Fourier series in the whole 
interval [—π, π] or at any point of it, it seems very convenient to represent the partial 
sum of the series in the form given it by Dirichlet. 

Let 

and 

°(f) = ~w~ + Σ (tffcCosfcx + bk ûnkx) 
2 k=\ 

a0 

(31.1) 

Sn(x) = — + ]£ (akcoskx + bksinkx). 
2 k=i 

(31.2) 

Substituting in (31.2) the expressions for ak and bk from the Fourier formulae, we find 

SÀX) = ^i Smdt+£i π J f(t) cosktdt I coskx 

+ I— f(t)$inktdt\ sinkx 
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π 

fit) T + Σ (cosfcicosfcx + sin/:/1 ûnkx) 
2 Α-=ι 

Λ 

-M /(0 — + £ cosk(t - x) dt=— [f{t) Dn{t - x) dt, (31.3) 
π J 

where Dn{ii) is a Dirichlet kernel (see § 29) and therefore 

sin In + — I w 
D„(W) 

2 sin 

(31.4) 

Supposing f — x — «, we obtain from (31.3) and (31.4) 

π η 

S„(x) = - J/(« + x) DM du= - JV(« + *) 
sin f + l ) M 

A/. (31.5) 

2 sin 

If we have to consider simultaneously the Fourier series of several functions, for 
example, f,g,y>, we will write Sn{x,f), Sn(x,g), Sn(x,ip) in order to distinguish 
between their partial sums. Usirg this notation, we note immediately that it follows 
directly from (31.5) that 

Sn(x,fi + / 2 ) = Sn(x,A) + Sn(x,f2)9 \ 
Sn(x, Cf) = CS.(x,f), J 

00 

and iff(x) = £ /*(*) , where the series converges uniformly, then 
k = l 

00 

s„(x,f) = Σ s„(xjd 
k=l 

(because uniformly convergent series can be integrated term-by-term). 
We will also note that since 

for any x, then in every case 
2π 

\Sm(x,f)\< («+ y) JV(OI<*', 
0 

(31.6) 

(31.7) 

(31.8) 

and although this estimate in the majority of cases is rough, it is, however, sometimes 
sufficient. 

In investigating the problems of the convergence of formula (31.5), the series 
is usually transformed, but before going into this question, we will remark here that 
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the partial sum of the series conjugate to (31.1) can be written in a similar manner, 
i.e. 

00 

£ (— bncosnx + an$mnx). 
fc=l 

Thus, supposing 
_ n 

S„(i) = £ (— bkcoskx + aksmkx), 

we find following a similar argument 
2π 

S*{x) = - ^ J 7 ( 0 Dn{t - x) du (31.9) 

where 

Dn(u) = £ sinku. 
k=\ 

The kernel Dn(u), conjugate to the Dirichlet kernel, as we have seen (see § 29), has 
the form 

u 
cos — — cos 

Dn(x) = ^ ^ — , (31.10) 
u 

2 s i n y 

(■♦I) 

therefore 

. » c o s — cos In + —\(t - x) 
«.<*) = - j - (f(0 - — ^ - ^ 

π J t — x 
dt (31.11) 

I — X 

2 sin 

or 
u I 1\ 

j » COS y - COS l/l + y ] W 

£„(* )=- - f/(« + *) - ~ 
π ] u 

-ί 2 s i n y 

du. (31.12) 

Now for the transformation of formulae (31.5) and (31.12) to more suitable forms, 
we will prove an important lemma. 

LEMMA. Iff(x) is summable, g(x) bounded and both possess a period 2π, then the 
integrals 

π η 

j f(x + t)g(t)cosntdt and j f(x + t)g(t)ûnntdt (31.13) 
—n —n 

tend to zero uniformly as n -> oo. 
Proof. Let 

Wx(t)=f(x + t)g(t). 

If Λ: is fixed, then ψχ(ί) is a summable function of the variable t and therefore it is 
clear that the integrals being considered only differ by a constant multiplier \\π from 
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the Fourier coefficients of this function. Thus for every x the integrals (31.13) tend to 
zero as n -* oo. But the significance of the lemma is to prove how uniformly they tend 
to zero. 

Following the argument of § 21, we have 

/ 
ipx(t)cosntdt < J Γ x V + n) " Ψχ® dt 

and similarly for sinnt. Therefore it is sufficient to prove that 
π 

j V* \t + ^f - V,(0\dt 
—π 

tends to zero uniformly with respect to x as n -> oo. But 

—π —π 

n 

<S\f(x+t+^)-f(x+t)\\g{t+^) 

(31.14) 

(0 dt 

dt 

+ j\f(x + t)\\g(t + ^J- g(t) dt. (31.15) 
—n 

Noting that g(t) is bounded and has a period of 2π, then \g(t)\ < M for any t, 
and also remembering that / ( i ) also has period 2π, we find for the first of the integrals 
on the right-hand side of (31.15) 

St 

j\f(x + t+^j -f(x+t) \\g (t+ ^j \dt 

< M!\f{x+t+j) -f(x+v 
— n 

dt <M Itt'+ï) ■fit) 

<Μω 

dt 

(31.16) 

where ω1(δ,/) is the integral modulus of continuity off(x) (see Introductory Ma-
terial, § 25); we already know that ω1(δ,/) tends to zero as δ -» 0 for any summable 
f(x). Since x no longer figures on the right-hand side of the inequality (31.16), we 
obtain 

!Ηχ + ί + τ)-κχ + »\\'{' + τ) dt->0 

uniformly relative to x as n -* oo. 
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For the estimate of the second integral of formula (31.15), we take any ε > 0 and 
resolve f(x) into the sum of two functions fi(x) and f2(x), of which the first is 
bounded, for example, |/i(x)| < K and for the second 

S\fi(f)\dt<e. 
— π 

Then 

J / ( * + t)\\g \t+ -J -g{t)]dt 
—π 

n n 

< K J* \g (t + ^ - g(t) j dt + j \f2(x + t) \\g \t + ^ - g(t) dt 
—n —n 

n 

< Κω,. (^, g\ + 2M ί \f2(x + t) \dt < Κω1 (j,g) + 2Με. (31.17) 
— π 

Since ωλ (π/η, g) -> 0, the number ε is arbitrary and x does not enter into the right-
hand side of (31.17), then the left-hand side of (31.17) tends to zero uniformly and 
the proof is concluded. 

Note 1. Our lemma holds if instead of the integrals of (31.13) we consider the inte-
grals 

b 

j f(x + t)g(t)cosnt dt and J f(x + t)g(t) sinnt dt9 
a a 

where a and b are any two points in [—π, π]. Indeed, it is sufficient to assume that 

r A = Î S ( 0 m [a9b], 
gl{) [0 outside [a, b], 

which would reduce this case to the preceding one. 
Note 2. In carrying out the proof we never made use of the fact that n is an integer. 

Therefore the lemma holds if n -* oo passing through all real values. 
Note 3. It will be useful later to know that our lemma holds if instead of g(t) we 

consider the function gx(t) for which the following conditions are fulfilled 

— 71 < X < 71 m 

( a ) |&(0 l<Af for „ . , ' 
— 71 <» t <; 71 

and moreover as h -> 0 
π 

(b)/ l&(i + A) -&(0l<*f-0 
—π 

uniformly relative to χ in [— π, π]. 
Indeed in this case the proof of the lemma is exactly the same. 
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Note 4. lïf{x) is a continuous function, then from the given proof we obtain 

n 

j / ( * + t)g(t)cosnt dt\ <Αω Ι^,Α + Βω,. ί ~ ' ^ ) > 

— π 

π 

where ω(δ,/) is the modulus of continuity off(x) and 4̂ and 1? are constants. 
In fact, in formula (31.16) when/(x) is continuous, 2πω(π /« , / ) can be substituted 

for ωί(πΙη9/), and a s / (x ) is bounded, the second integral of formula (31.15) does 
not exceed Bœ1(n/n,g) where B is a constant. 

§ 32. Simplification of expressions for Sn(x) and £„(■*) 

We will now use the lemma proved in § 31 to simplify the expressions for Sn(x) 
and Sn(x) (see (31.5) and (31.11)). 

We will first note that 

+ — cosww. (32.1)f 

/ 1 \ u u 
sm In + — I u smwwcos — + cos«usin — 

u u 
2 sm — 2 sin — 

e will also note that the function 

si«) - l l 
6 W 

u u 
2 t g y 

sinnu 
u 

2 t g y 

(32.2) 

is continuous in [— π, π]. The only uncertainty could be caused by the point u = 0; 
but, using L'Hôpital's rule, it is easily seen that lim g(u) = 0. We still require that 

g(u + 2π) = g(u); then g(u) is bounded in (— oo, + oo). 
From (32.1) and (32.2) we obtain 

Γ + 2") U —~ 
— + g(u) sinnu + — cosnu. (32.3) 

smfttt v l 

u u 2 
2 sin — 

2 

t The Continental abbreviation "tg" is used for "tangent" throughout this work (Translator). 
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Therefore from (31.5) we obtain 
n n 

Sn(x) = — f(u + x) du Λ f(u + x)g(u) sinnudu 
π J u π J 

+ -y— f(u + x) cosnudu. (32.4) 
— π 

The last two integrals of formula (32.4) tend to zero uniformly as n -> oo due to the 
lemma of § 31 and since g(u) is bounded. Therefore 

n 

1 f sinww Sn(x) = - / ( « + x) du + o(l), (32.5) π J u 

—
 71 

where o(l) is a magnitude which tends to zero uniformly. We will frequently use this 
fact. 

Note. It is sometimes important to estimate the magnitude o(l) more exactly; 
therefore we will now show that if f(pc) is continuous, then from Note 4 made at the 
end of § 31, the modulus of each of the last two integrals in (32.4) does not exceed 

A(0{^J) +B0)1 ( ï ' g ) ' (32>6) 

where A and B are constants. But since g(u) is a function of bounded variation and for 
such functions the integral modulus of continuity ωχ(δ) has the order 0(δ) (see 
Introductory Material, § 25), then (32.6) is a magnitude of order 

Finally, having noted that for any continuous function/(x) the modulus of con-
tinuity co(<5,/) does not exceed 0(<5), we conclude that in (32.7) the second term is 
either of the same order as the first or is infinitely small of a higher order. Therefore 
finally, supposing that 

π 

S„(x,f) = \- f / ( « + x) - ^ - du, (32.8) 
π J u 

—■71 

we find from (32.5) for continuous/(x) 

Sn{xJ) = Sn(x,f) + O |ω ( ^ > / ) ] · (32.9) 

When/(x) is any summable function, it is sometimes useful to estimate 

In 

\Sn(x,f) - Sn(x,f)\ < C j \f(x) | dx, (32.10) 
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where C is an absolute constant. This estimate is obtained directly from (32.4) and 
(32.8) if it is remembered that the function g(u) is bounded. 

After this remark which will be useful later, let us return to the simplification of 
formulae for partial sums. We wish to simplify the expression for Sn(x). For this 
purpose we note that (see (31.10)) 

! -«* (» + !) u u 
cos — — cos \n + — I u cos — — cos — cosnu 

_ , . 2 \ 2 / 2 2 smnu DM = - '— = + ——-
. u . u 2 

2 sin — 2 sin — 
2 2 

= I - C O S I H I + ^ιηκκ 
u 2 

2 t g y 

Hence if the lemma of § 31 is used, we immediately obtain 
n 

77/ \ l f ^ / v l - COSnU r , 1 N 

sn(x) = — \/(μ+ χ) du + o(i). 
2 t g -

If the function g(u) is used again, then another expression can be obtained for 
Sn(x). Namely, if we write 

- 1 — cosnu sinnu 
Dn{u) = + g(u) (1 - cosnu) + —^—, 

then, again using the lemma of § 31 we obtain 
71 71 

- N I f 1 - cos«« 1 Γ 
Sn(x) = f(u + x) du f(u + x)g(u)du + o(l) , 

7t j u π J 
—7i — n 

and since the second integral is 0(1), then 
π 

\ Ç 1 — COS77M 

SM = / ( « + *) du + 0(1) (32.12) 
π J u 

— 71 or 

- 1 Γ 1 — COSMW 

SM = - - J lf(x + u) -f(x - u)] du + 0(1). (32.13) 
o 

For future reference it will also be useful to note that, if δ > 0 is arbitrary, and 
fix) is bounded, then it is possible to rewrite (32.13) in the form 

SM = - - f L/(* + K) - fix ~ «)] l ~ °0SnU du + 0(1), (32.14) π J u 
o 

7X 

since the discarded integral f is 0(1). 
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§ 33. Riemann's principle of localization 

In § 32 we found a suitable expression for the partial sum of the Fourier series, 
from which an important corollary can easily be drawn. First, taking any δ > 0 
and denoting by g(u) a function, defined thus 

*(«) = 

0 
1 . 

— m 
u 

in (-<5, <5), 

( -π,-<5) and (δ, π), 

g(u + 2π) = g(u), 

on the basis of (32.5) we can write 

Sn(x) = — /(w + x) du Λ f(u + x)g(u) sinnudu + o(l), 
π J u π J 

and since g(u) is bounded and periodic, it follows that 

Stt(x) = ^ J7(n + x) ^ - du + o(l), 
- < 5 

U 
(33.1) 

where again o(l) tends to zero.f This formula allows the following extremely im-
portant theorem, known as Riemann's principle of localization, to be expressed. 

RIEMANN'S THEOREM. The convergence or divergence of a Fourier series at a point x 
depends only on the behaviour of the function f{x) in the neighbourhood of the point x. 

In fact, the value of the function f(x) outside the interval (x — <5, x + δ) does not 
figure at all in formula (33.1), and therefore the question whether Sn(x) tends to a 
limit as n -> oo depends only on the behaviour off(x) in this interval. Moreover, since 
in formula (33.1), as has already been proved, o(l) tends uniformly to zero, it is 
possible to judge the uniform convergence of Sn(x) in any interval by whether the 
integral on the right-hand side of (33.1) tends uniformly to a limit. 

This result is appropriately expressed in the form: 
THEOREM. Iftwo functionsfx {x) andf2(x) coincide in some interval [a9b]9 then in any 

interval [a + ε, b — ε] where ε > 0, their Fourier series are uniformly equiconvergent, 
i.e. the difference of these series converges uniformly to zero. 

Indeed, let 

t We draw the reader's attention to the work by Hille and Klein*1 ] where it is proved that 

à In 

I f sinnt 
Sn(x,f) - - J f(x + t) -j- dt 

- < 5 0 

Here ωχ (ô,f) is the integral modulus of continuity of/(x) and # i s an absolute constant. 
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Then/Oc) = 0 in [a, b]. Let a number δ > 0 be chosen such that δ < ε and x is any 
point of the interval [a + e,b — ε]. Then u + xe [a, b] for — δ < w < δ and there-
fore/(w + x) = 0; from formula (33.1): 

Sn(x) = o(l) in [a + ε, b — ε], 

where o(l) tends uniformly to zero in [0, 2π\. This means that the Fourier series of 
f(x) converges uniformly to zero in [a + ε, b — ε]. 

§ 34. Steinhauses theorem 

A useful corollary can be derived from the preceding results. It is due to Steinhausc3] 

and can be expressed in the following form: 
Ι/λ(χ) is a periodic function, satisfying Lipschitz9 condition of order 1, then the series 

σ(λ/) and λ(χ) o(f) are uniformly convergent in [—π,π]. 
In fact, we have 

n 

Sn(Xf) = - ( f(x + ί)λ(χ + 0 -S11^- dt + o(l) , 
π J t 

—n 
it 

1 C sinnt 
mSn(f) = - / ( * + t)X(pc) — — dt + o(l) . 

n J t 
—n Therefore, supposing 

λ(χ + Q - λ{χ) 
gxif) = , 

we have 
π 

Snßf) - K*)Sn(f) = - f fix + t)gx(t) sinnt dt + 0(1). (34.1) 
π J 

—π 

In order to prove that the right-hand side of (34.1) tends uniformly to zero, it is 
sufficient to apply to it the first part of Note 3 of the lemma in §31, providing only 
that the limitations imposed there on gx(t) are fulfilled. But the condition 

\gx(t)\<M 

uniformly with respect to x and t is the result of the fact that gx(t) satisfies the Lip-
schitz condition of order 1 ; it remains to prove that 

π 

f\g,{t + h)-gx(t)\dt = o(l) 

uniformly relative to x as h -> 0. 
To do so, taking ε > 0, we will consider an interval of length (— ε, ε); in it we have 

j\gx(t + h)-gx(t)\dt<4M£. 
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If ie( — π , — ε) or te(e9n), then for any η it is possible to find h such that the 
expression under the integral sign for all t in the considered interval will be less 
than η, and therefore the corresponding integral less than πη. This concludes the 
proof of the theorem. 

f sinx 
§ 35. Integral dx. Lebesgue constants 

o 
Before continuing with the study of the convergence of a Fourier series, we should 

mention certain properties of the expression 

* : ω - ^ . (35.1) 

which we will call a simplified Dirichlet kernel. Let us note first that from formula 
(33.1), taking into account the evenness of the simplified Dirichlet kernel, we im-
mediately find that ô 

1 f sinw u 
Sn(x) = - [f(x + u) +f(x - u)] du + o(l) . (35.2) 

Tt J U 
0 

If we consider the case/(x) = 1, then Sn(x) = 1 for any n9 and therefore 

Ô 

2 C sinww 
l = - \——du + o(l). (35.3) 

71 J U 
0 

Supposing nu = i, we then find that 
no 

2 Γ sint , 
1 = - - — Λ + ο(1), 

71 J t 
0 

and therefore 
ηδ 

. sint π 
hm dt = 2 * 

0 

Γ sin 

J "T 
o Hence it immediately follows that 

00 

C sint π J — * - 2 . (35-4) 
o 

i.e. this improper integral has meaning and we even know its magnitude. 
From the existence of this integral it follows that: if δ > 0 and δ' > 0, then 

δ' ηδ' 

Γ sinnt , ,. Γ sint 
hm dt = lim dt = 0. (35.5) 

Λ-»00 J * W->00 J * 

δ ηδ 

This formula will be necessary later. 

5 Baryl 
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We note that it is necessary to understand the existence of the integral (35.4) geo-
metrically; therefore we will dwell somewhat on this problem, although it should be 
known to the reader from courses on analysis. 

X' 

-3Jt - 2 ^ * — —-<tf 

il 

0 

"oS 

^ 
"l 

^ZJC uz 

"-H X 

za 
FIG. 5 

00 

The convergence of the integral f [(sin t)jt] dt could also be proved in another way. 
Supposing (Fig. 5) o 

uk 

C sini 
J —dt (k = 0,1,2,...), 

we see that 

uk 

kn 

sin(i + kn) C sum + kn) , vI Ç sin* 
= — - — , dt = ( - 1)* 7— dt, 

J t + kn v y J t + kn 

whence it follows that the series £ uk alternates its signs, whilst its terms monotonically 
k=0 

decrease in their absolute value and tend to zero, since 

\uk 

it 

r sii 
= J T+ 

sin t 1 1 

But according to Leibniz' well-known theorem this type of series should converge. 
On the other hand it is clear that when the sum £ uk has meaning, then it is the inte-
gral (35.4). Thus, 

We now note that 

whence 

<̂  f smw π 

o 
00 

Σ Uk < U0, 

n 

n Γ sinw 
— < u0 = du < n. 
2 J u 

(35.6) 

Thus from the monotonie nature of un and the alternating of their signs, we see 
that if A and B are any two numbers such that 0 < A < B, then 

B 

Γ s'mt 
dt < n. (35.7) 

Because of the evenness of (sin t)/t, this is also true if A < B < 0. 
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Finally, if A and B are of different signs, then dividing the integral by two, namely 
from A to 0 and from 0 to B, we find that 

f sin* 
dt < In. 

This simple statement will be very important to us later, since it follows from it that 
for any a and b we have 

Γ sinnt 
!—■» 

because 

< 2JZ, 

C sinnt f sin/ 

j — * - J — dt < In 

(35.8) 

(35.9) 

by virtue of (35.7). 
Now the fact that the integral of (35.8) is bounded is solely due to the interference 

of the positive and negative sinusoidal waves. If the modulus of the expression under 
the integral sign were taken, then the result would be completely different. We will 
prove that 

f I sinnt 
dt 

increases without bound on increase of n and we will even estimate the order of its 
growth exactly. This will be very important later. 

Let 

C I sinnt I f I sin« H Μ Ή br du. 

Then it is clear that 
(n+\)n 

Γ sinu Γ sini? 
L. i — L = \ du = dv 

+ J \ u \ J v + nn 

(35.10) 

and since at 0 < v < π, we have 

1 1 . 1 
< — < (n= 1,2,...), 

and 

then 

(n + \)n v + nn nn 

n 

J sinu dv = 2, 

n(n + 1) < In+i - h< 
nn 

(35.11) 
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Letting n run through the values 1, 2 , . . . , m — 1 and summing the inequalities 
(35.11) we find 

2 m — 1 1 m — 1 2 m~ I 1 

or 

2 m 1 2 w—1 1 

π n=2 n n «=i n 

But taking into account that 
1 1 

1 + 7Γ + ··· H ~ him, 
2 m 

where « denotes an asymptotic equality (see Introductory Material, § 11), we find 
Im « lnm. Thus, we find 

nn 

Γ | sin f/1 T 2 
J  du =  /„ « -  In«. (35.12) J u π 

o 

Thus, 7rt increases infinitely with increase o f« , and we also see the exact order 
of this increase. 

It immediately follows from (35.12) that 

f sinw 
lim 
Λ-»00 J I U 

0 
i.e. the integral 

oo 

Γ I sinx 

J * 

du = + oo , 

J * = oo, (35.13) 

which means that the integral (35.4) is known to converge only conditionally, not 
absolutely. 

From formula (35.12) we will derive a corollary, which will play an important role 
later. 

A Lebesgue constant is defined by the expression 

^ - i / | Z ) - (t)\dt, (35.14) 

where D„(t) is a Dirichlet kernel. 
Since D„(t) is an even function, 

Ln = ~ j \D„(t)\dt. 
0 

But we know (see § 32) that 
sin«* 

Α,ω = — - + o(i), 
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and therefore 
71 

0. Γ I sînw/ I 
dt + 0(1), 

2 Γ sinnt L"=*\\-r 
whence 

and due to (35.12) 

Thus 

o 

Ln& -γ In«. 
71 

n 
I f 4 

Ln = — \ \Dn(t)\ dt « - y l n « . (35.15) 
71 J 71 

—π 

It can be proved similarly that for a kernel conjugate to aDirichlet kernel the integral 
of the modulus has the same order of increase, i.e. it increases as ln«. 

To prove this, we will consider an auxiliary integral, namely 

ju„Î*£0Ldt. (35.16) 
J sin* ' 
o Since 

sin2 nt " 
- j — = Σ * ΐ η ( 2 * - 1 ) ί 

sinr fc=i 
(which is proved directly by multiplying both sides by sint and changing the product 
of sines to the difference of cosines) , then 

π/2 

Jn = t Î sin(2fc - \)t dt = t -^Γ—τ ~ l n " (35·17) 
0 

(here and later, we will not calculate the constant exactly but will simply write 
un ~ vn9 if A < un/vn < B, where A and B are positive constants). 

Let us now consider 
71 71 

Qn = - j ΐΑ,ωΐ dt = \ \ IÄ.C0I Λ· 
-71 0 

Since (see (32.11)) 
. - , x 1 — cos«/ sin«* 
4.(0 = — + - 2 - ' 

2 t g y 
then we have 

• * n 

Λ sin2 — t 
- , v 1 — cos « ί 2 
A,(0 = — + o(i) = — + o(i) 

2 sin — sin y 



110 BASIC THEORY OF TRIGONOMETRIC SERIES 

ί because 

Therefore 

2 
s" = ~Z 

71 

and therefore 

Thus, 

1 1 1 
t / t 

2 tg —- 2 sin — 2 sin — B 2 2 2 

c o s y - l 
1 t\ 

= - y t g 4 - ) · 

t 

2~ 

sin 

π/2 

4 Γ sin2nu 4 
dt+ 0(1) = - - 5 — * / « + 0 ( 1 ) = - / . + 0(1), 

7Γ j smw 7T 

ρη ~ Inn. 

n 

1 Γ I - I 
— \Dn(t)\ dt ~ Inn, 
π J 

(35.18) 

and this is what we wanted to prove. 

§ 36. Estimate of the partial sums of a Fourier series of a bounded function 

From the results of the preceding section we immediately obtain the following 
theorem: 

LEBESGUE'S THEOREM. Iff(x) is a bounded function 

then for n = 2 , 3 , 

and 

l/(*)l <M, 

\Sn(x)\ < CAfln/i, 0 < x < 2π 

\Sn(x)\ < CMlnn, 0 < x < 2π, 

(36.1) 

(36.2) 

where C is an absolute constant. 
Indeed (see (31.3) and (35.15)), 

|5.(. f(t)Dn(t-x)dt <M 

π 

x)\dt = MLn < CMlnn 

and similarly (see (31.9) and (35.18)) 

\SH(x)\ < CMlnn. 
The theorem is proved. 
Note 1. It could be thought that formula (36.1) is extremely rough; in fact, it can 

be proved that for a bounded function the partial sums of a Fourier series should be 
bounded. However, this is untrue even for continuous functions. If the Fourier series 
of a continuous function converged uniformly towards it, then such a bound should 



CRITERION OF CONVERGENCE OF A FOURIER SERIES 111 

occur; but we will see later that for continuous functions Fourier series can converge 
non-uniformly, and can also diverge and even have unbounded partial sums in an 
infinite set of points. 

Note 2. If f(x)eL[0, 2π] and | / (x) | < M in some [a, b] c [0, 2π], then in any 
[α', V\,a<a'<b'< b, we have 

n 

\S„(x)\<AMlnn + j j \f(t)\ dt (» = 2,3,...), (36.3) 
—π 

where A is an absolute constant and δ = min(a' — a9b — b'). 
Indeed, since „ 

Sn(x) = - \f(t + x)DH(t)dt 
71 J 

—π 
Ô 

= i [f(f + x)Dn(t) dt + 1- ί /(* + t)Dn{t) dt, (36.4) 
71 J 7Z J 

-Ô [ - π , π ] - ( - < 5 , < 5 ) 

then by choosing δ so that δ = min(a' — a, b — b'), we see that at xe [a!, bf] the 
argument ί + x in the first integral does not go outside [a, b] which means that 

Ô 

π J f(t + x)Dn(t)dt <M— I \Dn(t)\dt <AM\nn, (36.5) 
π J 

< ll \f(t)\dt. (36.6) 

where A is an absolute constant. 
But since outside (— ô, S) we have |£)„(ί)Ι < π/δ then for the second integral in 

(36.4) we find 

^ j f(x + t)Dn(t)dt\ 
[— π,π]—(—<5,<5) | —π 

Combining (36.4), (36.5) and (36.6), we obtain (36.3). Instead of (36.3) we can also 
W n t e | Sn(x) | < CM Inn as n > N, 

n 

where N varies with M, δ and j \f(t)\ dt, since if N is sufficiently large, then at 
—n 

n > N the second term of formula (36.3) becomes less than the first. 

§ 37. Criterion of convergence of a Fourier series 

Let us return to the problem of the convergence of Fourier series. We want to find 
the conditions under which σ(/) converges at some point x to some value S. 

For this purpose we first remark that it follows from (33.1) that 
Ô 

s»(x) = τ: f [/(* + 0 + / (* - 0] ̂ ^ d t + o(l), (37.1) 
71 J I 



112 BASIC THEORY OF TRIGONOMETRIC SERIES 

where o(l) signifies a magnitude tending uniformly to zero in [—π,π]. Moreover, 
multiplying both sides of equality (35.3) by S we have 

2 f sinnu 
- S 
π J u 

-du + oQ). (37.2) 
u 

From (37.1) and (37.2) we now find that 

<5 

Sn(x) - S = - f [f(x + u) +f(x - u) - 2S) ^^-du + o(l) . (37.3) 
π J u 

o 

It is clear from this that for the convergence of σ( / ) to the value S at the point x 
it is necessary and sufficient that 

δ 

lim I [f{x + u) + f{x - u) - 2S] ^^Ldu = 0. (37.4) 
0 

If we wish the series σ( / ) to have a "natural sum" at the point x, i.e. a sum equal 
t o / ( x ) , then it is necessary and sufficient that 

0 

lim f 
n->oo J 

0 

Supposing 

[fix + u) +fix - w) - 2fix)]^^-du = 0. (37.5) 

9>*(") = / ( * + «) + / ( * - w) - 2 /W, (37.6) 

we can therefore formulate this statement: 
For the series a if) to converge to fix) at some point x, it is necessary and sufficient 

that δ 

C sinnu 
hm (pxiu) du = 0, (37.7) 
n->oo J u 

0 

where δ > 0 andyx{u) is defined by formula (37.6). 
If the function/(x) is continuous in some interval ia,b), then it is possible to raise 

the question of the uniform convergence of the series a if) to fix). 
Given any s > 0. From the continuity of/(x) in the interval (0, b), it follows that 

it is continuous and therefore bounded in the interval [a + ε, b — έ\. Therefore, if 
(35.3) is multiplied by fix), we have 

/"(*) = \ (f(*)^-dt + o( l) , (37.8) 
71 J t 

0 

where o(l) tends uniformly to zero in [a + ε, b — ε]. From (37.1) and (37.8) we then 
derive tf 

<$,(*) -/(*) = - [[fix + 11) +/(* - u) - 2/(jc)]^^-rfi/ + o(l). (37.9) 
71 J U 
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Here δ can be taken as any number. Therefore if we take δ < ε, then for 
xe[a + ε, b — ε] and \u\ < δ we will have u + xe(a, b) and u — xe(a9 b), and 
then <px(u), defined by formula (37.6), will be still more continuous in (a, b). Hence, 
using (37.9), we can conclude: 

Iff(x) is continuous in (a, b) and given any ε > 0, then for uniform convergence of 
the series o(f) in [a + e,b — ε], it is necessary and sufficient that 

o 

f sinnu 
lim φχ(ιι) du = 0 

n-»oo J u 

uniformly in [a,b]; here δ is any number satisfying the inequality 0 < δ < ε, and<px(u) 
is a function defined by the equality (37.6) and continuous for 

a + εKx<b — ε9 \u\<ô. 

§ 38. Dini's test 

The conditions that have been obtained for convergence (and for uniform con-
vergence), even though they are necessary and sufficient, are very difficult to apply. 
Therefore we derive from them a series of tests which will be sufficient only for con-
vergence (or for uniform convergence) but are frequently found to be very useful in 
simple and important cases. 

Before deriving these tests, we will give a definition. 
DEFINITION. Following Lebesgue, we say that the point x0 is regular, iff(x0 — 0) 

and/(x0 + 0) exist and if 
, , , /(*o + 0 ) + / ( * o - 0 ) 

/ ( * o ) = j · 

It is clear that any point of continuity is regular; also the points of discontinuity of 
the first kind will be regular, that is, those in which the magnitude of the function is 
the arithmetic mean of its limits left and right. 

Let us prove the following theorem: 
Dini's test. The series o(f) converges to f(x) at every regular point x, where the 

integral ô 

\f(x + u)+f(x-u)-2f(x)\^-J' 
o has meaning. 

Indeed, if this integral has meaning, then it is possible for any ε > 0 to choose η 
so small that 

du 
\f{x + u) + / ( J C - «) - 2/001 < e-

l· 0 

Then for any n, since |sin«w| < 1, we have 

[fix + u) +f(x - ii) - 2f(x)]*^-du < ε. 

5a Bary I 
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But by virtue of Note 1 of the lemma in § 31 

f(x + u)+f(x-u)-2f(x) 
/ $innudu-+0 as «->oo. 

v 
From this, it follows that 

Ô 

C sin n u 
lim [f(pc + u) + f(x - u) - 2 / 0 ) ] du = 0 

M->QO J

0 

and from (37.9) it follows that the convergence is proved. 
In particular, if it is supposed that 

<Px(u) =f(x + u) + / ( * - w) - 2f(x). 

then Dini's test gives: if the function f(x) is continuous at the point x and 

ΠΨΛΟΙ 
dt (38.1) 

has meaning, then σ(/) converges tof(x) at the point x. 
A number of corollaries can be derived from this. For example, if/(x) in the neigh-

bourhood of the point x satisfies the Lipschitz condition of order a > 0, i.e. if 

\f(x + u)-f(x)\ <K\u\« 

for | u\ < ό, then the integral (38.1) has meaning, which signifies that o{f) converges 
t o / ( x ) . If the function f(x) has a finite derivative at the point x, then in the neigh-
bourhood of this point it satisfies the Lipschitz condition of order a = 1 and there-
fore: 

At the point x, where f(x) possesses a finite derivative, its Fourier series converges to 
it. 

In particular, iff(x) is differentiable everywhere in ( — π, π), then its Fourier series 
converges everywhere in this interval. 

§ 39. Jordan's test 

As is known, any function of bounded variation is the difference of two non-
decreasing bounded functions. If the function is monotonie, then it only has a dis-
continuity of the first kind. Moreover, if a function of bounded variation is continuous, 
then it is possible to represent it as the difference of two continuous non-decreasing 
functions. 

We use the facts to prove the following theorem : 
JORDAN'S THEOREM. Iff{x) is of bounded variation in some interval (a, b), then its 

Fourier series converges at every point of this interval. Its sum is f{x) at a point of 
continuity and [f(x + 0) + f(x — 0)]/2 at a point of discontinuity. Finally, if{af, b') 
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lies entirely inside the interval (a,b), where f(x) is continuous, then the Fourier series 
converges uniformly in (a'9 bf). 

From remarks made earlier, it is clear that it is sufficient to prove the theorem for 
the case of non-decreasing fix). In this case, supposing 

S = 
/ ( * + 0 ) + / ( * - 0 ) 

we see from 

fix + u) + f(x - u) - 2S = [f(x + u) -fix + 0)] + [fix - u) -fix- 0)Jy 

that at a fixed x, each function in brackets is a monotonie function of u. We will 
now estimate 

/ 

sin nu 
[fix + u) -fix + 0)] du. (39.1) 

Here δ is chosen so that x ± <5e (ß, b). But whatever ε > 0, it is possible to take 
(5-L < δ so small that 

\f(x + u) -fix + 0)| < ε 0 < u < δ±. 

Since fix + w) — fix + 0) does not decrease and is non-negative, then applying 
the second mean value theorem we see that 

«1 

J 
sin nu 

[f(x + u) - f(x + 0)] du 

°1 
/* sin w w 

[fix + «i) - / ( ^ + 0)] J — — A * , (39.2) 

where 0 < δ2 < δ±. But since (see (35.7)) 

ai 

02 

/ 
02 

sin WM 
du < π 

for any positive δχ and <52, then the modulus of integral (39.2) does not exceed πε« 
On the basis of the lemma of § 31 

υ 

! 
sin «M 

[fix + u) -fix + 0)]- du < 2πε, 

if n is sufficiently large. 
In the same way, 

υ 

I sin « w 
l / ( * - « ) - / ( * - 0 ) ] — — rf«. 

is estimated. 
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Therefore, for sufficiently large n 

C sin n u 
[f(x + u) + fix - u) - 2S] du 

J u 
< 4πε. 

where ε is as small as desired, and then on the basis of the convergence test of § 37 
we see that the series converges at the point x to the value S. 

Now let fix) be continuous in some interval [a,b], and [a!, b'\ be any interval 
lying completely within (a, b). 

It is possible to choose δ1 so small that 

I / O + u) - fix)\ < ε and \f(x - w) - / ( x ) | < ε, 

if a! < x < V and 0 < w < dt. If this is so, then in the preceding estimates of the 
integrals, x can be taken anywhere in (α', b') and therefore 

sinww 
[/(* + u) + / ( * - i/) - 2/(*)] du < 4πε 

for a! < x < ft', because of the test in § 37, which means that the series converges 
uniformly in (α', b'). 

Jordan's theorem has been proved. 
From the given theorem, it follows in particular that if fix) is of bounded variation 

in the whole interval [— π,π] and continuous in it, whilst fi — n) = / ( π ) , then its 
Fourier series converges uniformly in — oo < x < + GO . 

Therefore: the Fourier series for any periodic absolutely continuous function con-
verges uniformly to it in — oo < x < + oo. 

Note. An important particular case of the given theorem was considered by Dirich-
let. He investigated the case when the function fix) is bounded and has only a finite 
number of maxima and minima and no more than a finite number of points of dis-
continuity. For these functions he proved the convergence of the Fourier series at 
every point. It is clear that these functions are all of bounded variation. 

§ 40. Integration of Fourier series 

Let / (x) be summable and 

/ ( * ) ~ ^ Γ + Tsiûncosnx + bnsinnx). 

Let us denote the primitive of/(x) by Fix). Then 

a0 ^ — bn cosnx + an sinnx 
F(x) = ^-x+C + Z = (40.1) 

whilst the series on the right-hand side converges uniformly. 
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This theorem is due to Lebesgue. In order to prove it, it is sufficient to note that 
F(x) — (a0l2)x is the primitive off(x) — a0/2, it is absolutely continuous and has a 
period 2π (see § 23, No. 8). 

Therefore, the Fourier series for F(x) — (a0/2)x converges uniformly to it. But it 
has the form (see § 23, No. 8) 

— bn cosnx + an smnx 
^ n " 

This concludes the proof. 
As a corollary, we obtain for any a and b 

I f(x) dx = ~^r-
b ™ — bn cosnx + an ûnnx \b 

a n=l 

i.e. Fourier series (even divergent) can be integrated term by term in any interval. 
Corollary. In formula (40.1) the series converges for all x; in particular, at x = 0; 

but this indicates the convergence of the series 

hin ' 
00 

Thus : for any Fourier-Lebesgue series, the series ]T bn/n converges. 

This theorem makes it possible in some cases to establish immediately that the 
given series is not a Fourier-Lebesgue series. Thus, for example, the series 

i2, ûnnx 

hi In« 

is not a Fourier-Lebesgue series, although from Theorem 1 § 30 it converges at every 
point. 

On the other hand, the series Σα„/η can also diverge; in particular, the series 
n = \ 

™ cosnx 

hi In« ' 

for which the series £ anjn = ]T l/Qtlnri) diverges, is nevertheless a Fourier-Lebesgue 
series (this was proved in § 30). 

§ 41. Gibbs's phenomenon 

We have proved in § 39 that for a function of bounded variation the Fourier series 
converges at every point, particularly, at points of discontinuity. We want to study 
in more detail the behaviour of the partial sums of the series o(f) at those points 
where/(x) is discontinuous. Let us start with an investigation of a special case and 
then transfer to a general case. 
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Let f(x) = x in ( — π,π) and / (x ) have a period 2π. Since f(x) is odd, then its 
Fourier series consists of sines only and (see § 8) 

n π 

2 Ç 2 Γ 
bn = — / ( * ) sinwxJx = — xsinnxdx. 

n J 7i J 

Integrating by parts, we find that 

bn = 

Thus 

2 -
π 

[sinx 

L l 

■ xcosnx 
n o ηπ J 

0 

sin2x sin 3.x; 
- — + — 

cosnx dx = 2 ( - 1)"_1 —. 

, <x 1 sinnx 
+ (-1)""1 + · fix) 

Since/(x) is of bounded variation, then its Fourier series converges everywhere to 
f(x) at its points of continuity and to [f(x + 0) +f(x — 0)]/2 at the points of dis-
continuity of the first kind. Therefore we have for x Φ ± π 

sinx 
1 

sin2x sin3x 
—^— + —^— + 

sin«* 
± -^7— + 

if x = ±π, then the series converges to 0 (which is evident immediately, as all its 
terms then equal zero). 

If we make the change in variable x = π — t, then when x passes through the 
interval [—π,π], the variable t will pass through the interval [0 ,2π] , whence it 
follows that 

π — t sm{n — t) 8Ϊη2(π —t) 8Ϊη3(π — t) sinnfac — /) 
+ + 

sini sin2i sin3i sinnt 
+ ——- + ——- + ... + + 

1 2 3 n 
(41.1) 

if t Φ 0 and t Φ In. At these points the series on the right-hand side of (41.1) con-
verges to zero. 

We have already said in § 30 that this series will play an important role in many 
problems of the theory of trigonometric series. In § 30 it was proved the partial sums 
of series (41.1) are all bounded, i.e. there exists a constant C such that 

" sinfcx 

h k <c, 
— 00 < X < + 0 0 , 

» = 1,2,. . . . 

However, later it will be necessary for us to study in more detail the behaviour of these 
partial sums in the neighbourhood of the point x = 0. 

We have 

" sinfcx 
S„(X) = Σ^ψ^ = J*( Σ CO»**) dt = J D„(t) -

1 
dt, 
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where, as always, Dn(f) is a Dirichlet kernel. Therefore 

X 

Sn(x) = JDn(t)dt-j. (41.2) 
0 

But we know that (see (32.3)) 

sinnt ,. . 1 
Ai(0 = 1- g(t)smnt + —cosnt, 

where g(t) is bounded. 
Supposing 

= [8® for ° < * < *' V x W " I 0 for x < * < 2π, 

ψχ(ί + 2π) = ψχ(ί) 

and using Note 3 of the lemma in § 31, we conclude that 

JC X 

j Da(t) dt = f - ^ dt + o(l) (41.3) 
0 0 

uniformly in 0 < x < 2π; therefore from (41.2) and (41.3) 

X 

S„(x) = - y + J - y - Λ + o(l) 

or 

If 

nx 
x C sin/ 

S„(x) = - y + J — Λ + "(I)· (41.4) 
0 

π — Λ: 
^(x) = — - — in 0 < x < 2π, (41.5) 

ψ(χ + 2π) = ψ(χ), 

then the function ψ(χ) has the form given in Fig. 6. We have already seen that the 
series (41.1) is σ(ψ) and it converges everywhere to ψ(χ)9 apart from the points 
x = 0 and x = 2π, where it converges to zero. 

Allowing x to take the values 

π 2π 
Λτ —~ , Λ> —— , · · · , X —— 7ν, 
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we see from (41.4) that 
π Λ 

o 

lu 

(2π\ π Ç sini SA-v)+-n=\—dt + 0{X)> 

kn ! 

( kn\ kn f sini 
^r)+^ = j-rdt + °v- \ 

o J 
Taking into account what was said in § 35 concerning the behaviour of the curve 

y = (sinx)/x, it is immediately seen that the curves y = Sn(x) pass through the origin 

FIG. 6 

of the co-ordinates, fluctuate around the straight line y = ψ(χ) and although for any 
x9 0 < x < π9 we have 

lim Sn(x) = ψ(χ), 
n->oo 

however, from (41.6) it is evident that the curves y = Sn(x) to the right of the point 
x = 0 concentrate round the interval (0, /) where 

C sint 
I = dt. 

o 

This type of picture is also obtained on the left of x = 0, since all Sn{x) are odd 
functions. Therefore, around the point x — 0 the curves oscillate not between 
— π/2 and π/2, as would be expected, but are concentrated round the interval [—/,/]. 
But calculation shows that / = 1-8519 ..., and since π/2 = 1-57 ..., then the length 
of the interval [—1,1] exceeds the length of [— π/2, π/2]. 

This circumstance was first noticed by Gibbsm, which is why it is known as Gibbs's 
phenomenon, and the ratio / to π\2 is Gibbs's constant; this constant equals 1-17. 
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We will show that Gibbs's phenomenon holds for any function of bounded vari-
ation about its points of discontinuity, as long as they are isolated. Indeed, in a func-
tion of bounded variation the points of discontinuity are only of the first kind. 

Let/(x) be such a function and x0 be an isolated point of discontinuity. I f / (x 0 + 0) 
— / (*o — 0) = d, then the function 

d 

is continuous in a sufficiently small neighbourhood of the point x0, since 
Q(x0 ± 0) = f(x0 ± 0) - ( Φ 0 V(±0) and therefore 

d 
<?(*o + 0) - ρ(χ0 - 0) = d [y (+ 0) - y ( - 0)] = 0. 

Since there are no other points of discontinuity for/(x) in the neighbourhood being 
considered, if this neighbourhood were chosen to be sufficiently small, then ρ(χ) is 
continuous in this neighbourhood and is of bounded variation in [0, 2π], This means 
that its Fourier series converges uniformly in a sufficiently small neighbourhood of 
JC0; therefore the behaviour of the partial sums of the Fourier series for / (x) around 
JC0 will be just the same as for (d/π) ψ(χ — x0), i.e. as for (d/π) ψ(χ) around x — 0; 
therefore, Gibbs's phenomenon should also occur here. 

From Riemann's principle of localization (see § 33) this is true iff(x)eL[—n, π] 
is of bounded variation in [a, b] and x0 is an isolated point of discontinuity of / (x) 
in [a9b]. 

§ 42. Determination of the magnitude of the discontinuity of a function from its 
Fourier series 

Let us assume that at some point x the function f(x) has a discontinuity of the 
first kind, whilst 

/ ( * + 0 ) - / ( * - ( > ) = </. (42.1) 

The magnitude of this discontinuity can be determined from the following formula 
(see Lukacsc13): 

l i m - f ^ - = . (42.2) 
a.»«, Inn π 

Snipe) d 
urn 

Λ - * 0 0 

In fact, we have 

f(x + t) - f(x - t) = d + e(t), where s(t) -» 0 as t -> 0 

But from formula (31.9) due to the oddness of Dn(f) we have 

S*(x) = - ^ f [/(* + ') - / ( * - 0JÄ, (0 dt, 
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(42.4) 

S„(x) = - - fDu{t)dt--[e( t)D„(t)dt . (42.3) 
71 J 71 J 

0 0 

We will prove first that 
Tt 

lim -— Dn(t)dt = 1. 
„̂ oo In« J 

o 

Indeed, supposing that v — (n — l)/2, we have 

f _ » coskt |π / 1 1 \ 

J«e*--ÄnrL-2(, + 3 + - + 2TM) 
0 

= 2[(1 + y + T + - + i + 27Ti)-y(1 + y + - + 7) 

lna> — — lnv = lnr « In«. (42.5) 

Thus, formula (42.4) is proved. 
We will prove now that 

l i m — \e(t)Dn(t)dt = 0. 
„^ao inn J 

(42.6) 

For this we will take any η > 0 and choose δ such that 

|ε(01 < η at 0 < / < δ. 
Then 

js(t)Dn(t)dt < η j\Da(t)\dt < ΟηΙηη (42.7) 

(from (35.18)) where Cis a constant. Moreover, since 

π D„(t) < T at δ < t < π (42.8) 

from (29.11) it follows that 

fe(t)DH(t)dt = 0(1), 

and therefore, (42.6) follows from (42.7) and (42.8). From (42.3), (42.4) and (42.6), the 
truth of formula (42.2) now follows. 

COROLLARY 1. At any point of discontinuity of the first kind, the series conjugate to 
the Fourier series for f {x) diverges. 
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Indeed, at this point , 
A(*,f) = In/i + ε„1η«, 

where εη -* 0. 
COROLLARY 2. If f(x) is continuous at the point x, then Sn(fx) = o(lnw); if 

Sn(x,f) = o(lnn), then the point x cannot be a point of discontinuity of the first kind. 
COROLLARY 3. If for the function f(x), the Fourier coefficients are of order o(l/n), 

then there can be no points of discontinuity of the first kind in it. 
Indeed, then , , , . 

Sn(f, x) = o \l + j + ... + -J = oQnn) 

(see Introductory Material, § 11). 
From this we conclude in particular that: 
Iff(x) is of bounded variation and the Fourier coefficients are of order o(l/w), then 

it is continuous. 
Indeed, in a function/(x) of bounded variation, points of discontinuity can only be 

of the first kind; but from Corollary 3 it follows that such points cannot exist and 
therefore/(x) is continuous. 

However, it must be stated that if/(x) is continuous and of bounded variation, then 
its Fourier coefficients are of order o(\jn). We will prove this in Chapter II, § 2. 

§ 43. Singularities of Fourier series of continuous functions. Fejér polynomials 

We want to show that if no limitations are imposed on the function/(x) except 
continuity, then its Fourier series can also diverge at some point and converge non-
uniformly about some point, although it converges everywhere. The first examples 
of this kind were given by du Bois-Reymond[13 and Lebesgue, therefore it is custom-
ary to refer to these facts as du Bois-Reymond's singularity (for the case of divergence) 
and Lebesgue*s singularity (for the case of non-uniform convergence). 

Here, following Fejért2], we will establish some trigonometric polynomials, from 
which functions will be constructed possessing either one or other of these singularities. 
Subsequently (in Chapter IV) these Fejér polynomials will help in the construction of 
considerably more complicated examples, namely: continuous functions, in which the 
Fourier series diverges in an everywhere dense set, or in a set of the power of the 
continuum and also continuous functions in which the series converges everywhere 
but non-uniformly in any interval <5, lying in [—π, π]. 

Constructional elements. Let us consider two trigonometric polynomials 

Λ , N cosnx cos(n + l)x cos(2« — l)x 
e ( * , „ ) - _ _ + +... + j 

cos(2« + l)x cos(2« + 2)x cos3«x 
— + ^ — + ··· + 

Tcos(2« -

" L Γ 2 n 
(43.1) 

— x sinnx sin(n + l )x sin (In — l)x 

rsin(2« + l)x sin(2« + 2)x s in3«^l 
- [ i + j + - + - ^ - - (43.2) 
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Let us note their properties as follows : 

(a) There exists a constant C such that 

|Q(x, ri)\<C and |Q(x, ri)\<C (43.3) 
for any x and n. 

In fact 
" cos(2« — k)x — cos(2« + k)x . » sinkx 

Q(x, n) = 2, r = 2sin2«x 2, — η — > 
k=\ K k=\ & 

— « sin(2« — k)x — sin(2w 4- k)x " sinkx 
Q(x, n) = Σ τ = ~ 2 cos2nx £ — j — · 

k=\ K k=\ K 

But, as is known (see (30.8)) we have 

" sinkx 
La 

k=\ 
-Σ t 

< M ( — oo < x < + oo, n = 1, 2 , . . . ) . 

Therefore, supposing C = 2 ¥ , we see that property (a) is proved. 

(b) If we denote by <p(x,Q) or <p(x9Q) any partial sum of the polynomial Q(x) or 
Q(x), (i.e. the sum of any number of the first terms in the polynomial), then 

\<p(xt Ô) | < 2 ( 1 + l n n ) | 
and i , - i (43.4) 

\<p(x, Q)\ < 2 ( 1 + In«), J 
because 

1 1 
1 + _- + ... + _ < 1 + ]nHm 

2 n (c) If ö < x < π , then 

|ç>(*, ß ) | < M d and |ç>(*, β ) | < Λ/ό, (43.5) 

where Äfö is a constant depending only on δ. 
Indeed, every sum φ(x, Q) has either the form 

p cos(n + k)x 
Σ — ϊ for / > < * - 1, 

or the form 
"-1 cos(« + k)x p cos(2« + k)x 

k=o n — k k= 
> for p < n. 

This means that each of the sums in the expression φ (x, Q) has the form 
]£ ock cos(n + fc) x, where the numbers afc are positive, decrease or increase mono-
tonically and do not exceed 1 ; therefore, using the corollary of Abel's transfor-
mation (see Introductory Material, § 1), we see that each such sum does not exceed 
the constants depending only on δ. The same argument holds for φ(x, Q), since 
there everything is the same except that sines are substituted for cosines. 
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(d) Finally, we assume 

cosnx cos(n + l)x cos(2w — l)x , Ä V 

P(x,n) = —^— + „ - i + ' " + — i ' ( 4 3 ' 6 ) 

sinnx sin(« + l)x sin(2«— l)x 
P(X,n) = - j j - + ; _ / + - + i . (43.7) 

i.e. P(x, ri) is the sum of the first n terms of Q(x9 ri) and P{x, ri) is the sum of the 
first n terms of Q(x, ri). Then we have 

p(0, „) = ! + — + ... + - - > lnw, (43.8) 

sin« 7- sin(2w — 1)τ~~ 
" - 4« Ρ(4ϋ·")-—ϋ—+ - + 

/ 1 1\ . π 1 
> I l + -7Γ + ·■■ + — s m — > - 7 = l n H , 

\ 2 n) 4 , /2 
Therefore, 

- / π \ Inn 
i
(r„'»)>vf·

We will use these facts for establishing the examples required. 

§ 44. A continuous function with a Fourier series which converges everywhere but not 
uniformly 

Let a > 1 be an integer, which we will select later. Let us suppose that 

nk = ak2 (44.1) 
and define 

Qk(x) = Q(x,nà, (44.2) 

where Q(x, ri) is a trigonometric polynomial, defined by formula (43.2). 
Let us assume 

00 1 -
*(*) = Σ ρ ß*(*) (44.3) 

and prove if a is chosen suitably that g(x) is a function with the properties given in the 
title of this section. 

Indeed, from (43.3) for all x and k 

lß*(*) l<C, (44.4) 
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and therefore series (44.3) converges absolutely and uniformly, which means g(x) is 
continuous. Since for any a > 1 and for k > 2 we have 

a*2 > 3a(fe-1)2, 
i.e. (see (44.1)) 

nk > 3/ifc»!, 

then from (44.2) it follows that no term containing ûnnx appears simultaneously for 
any n in two different Qk(x), therefore in the series (44.3) all the sines, as in a normal 
trigonometric series, are arranged in ascending order of the multiplier n for x. 

On the basis of the lemma of § 12, series (44.3) is the Fourier series of g(x), because 
its partial sums with indices 3nk converge uniformly to g(x). 

We will prove that the partial sums Sn(x, g) of the Fourier series for g(x) are all 
bounded. 

Indeed, each such sum has the form 
m 1 - 1 -

Sa{x, g) = Σ TÏ ß*(*) + fm , 1Λ2 <P(X> ßm+l) (44.5) 

(in particular cases the second term of the sum (44.5) can disappear). But then on the 
basis of (44.2) and (43.3) we have 

m 1 _ 

Zjfc2ß*(*) 
k=2K 

m l 

< C E p < ^ (44.6) 

where A is an absolute constant. Moreover, on the basis of (44.2), (43.2) and (43.4) 
we have 

1 1 

(m +"l)2 < r„ , iN2 2 (l + ln«(m+1)2) < 2(1 + lna) (44.7) 
I (m + l ) 2 

and, therefore, from (44.5), (44.6) and (44.7) 

\Sn(x,g)\<B (« = 0, 1 , . . . ; 0 < χ < 2 π ) , (44.8) 

where B is an absolute constant. 
We will note in passing (this will be necessary in Chapter IV) that, supposing 

Sn(x,g) - g(x) = Rn(x,g), 
we have 

\Rn(x,g)\<K (n= 1,2,...; -π<χ<π), (44.9) 

where ^ i s an absolute constant, which follows from the fact that g(x) is bounded and 
from (44.8). 

Let us turn to a study of the convergence of series σ (g). 
We will first remark that for any ô > 0 in the interval ô < x < π (which also 

means — π < x < — <5) the Fourier series for g(x) converges uniformly. 
Indeed, from formula (44.5) it is evident that 

1 - °° 1 -
Rn(x, g) = , , n 2 <p(x, Qm+i) - Σ ΰ Qk(x), 

\m -t- i) w + i AC 
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and then from (43.3) and (43.5) it follows that 

00 1 Μδ 

if n and therefore m is sufficiently large. 
Thus we see that the Fourier series for g(x) converges for any x φ 0 (mod 2π). But 

for x = 0 (mod2ft) it should also converge, since it consists only of sines. 
It remains for us to prove that the series o(g) converges non-uniformly near x = 0. 
For this purpose we consider its partial sums with indices 

vm = 2nm - 1. 
Every such sum has the form 

m-i i _ i _ 

k._=\K m 

therefore 
1 - °° 1 -

Rvm(x) = 5vmW - g(x) = -^ΛΗΧ, nm) ~Στϊ Qk(x)-
m m K 

Supposing 

π 
x« 

we find from (43.3) and (43.9) 

1 - / π \ ^ 1 

RM>~2P[^,nm)-C^¥> 
provided we choose a so that 

4nm' 

1 1 
> —ς-τ=·1ηα"· -

C 
m 

Ina 
- C> I, 

Ina > >/2 (1 + C). 
Thus 

RVm(xm)>l ( m = l , 2 ? . . . ) (44.10) 

for some sequence of points xm tending to 0, which means that the Fourier series for 
g(x) converges non-uniformly near x = 0. 

The theorem is proved. 

§ 45. Continuous function with a Fourier series divergent at one point (Fejér's example) 

We shall consider Fejér's polynomials Q(x, «), described in § 43, and by using them 
establish the Fourier series of continuous functions divergent at x = 0; in this case, 
series will be obtained as desired possessing either bounded or unbounded partial 
sums. These and other examples will be used later (in Chapter IV) for constructions 
of more complex character. 

We assume first as in the preceding section 

nk = ak\ 
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where a is an integer and a > 2; let us suppose 

Qu(x) = Q(x,nJ, (45.1) 
and let 

We will again see as in the preceding section that / (x) is continuous and the series 
(45.2), if every term of any polynomial Qk(x) in it is considered separately (but not 
grouped in sums), is its Fourier series. 

We see, just as in the proof of (44.8), that 

\S„(x,f)\<B (45.3) 

for any n and x and that the series o(f) converges uniformly in( — π < χ < — δ) and 
(δ < x < π), i.e. it converges for any x φ 0 (mod 2π). But at x = 0 it diverges, 
since supposing that 

vm = 2nm - 1, μηϊ = 3ttw_l5 

we have 
■P(0, nm) ln«m m2\\\a 

Sv (0) - S„ (0) = V \ m ) > ^ = r— = lne > 0, m = 1, 2 , . . . 
"mV y ^mV J m2 m2 m2 

Consequently, Cauchy's test of convergence is not fulfilled. 
Thus, a(f) diverges at x = 0, although its partial sums are all bounded by virtue 

of (45.3). 
If instead of nk = ak2 we supposed 

nk = ak3 (a>2), 
then we would obtain 

P(Q>nm) m3lna 
^ ( 0 ) - S„m(0) = - ^ - > - ^ - = m Ina, 

i.e. the series would not only diverge at the point x = 0, but would have unbounded 
partial sums at this point. 

§ 46. Divergence at one point (Lebesgue's example) 

The preceding examples of Fejér (see § 45) although suitable for use in further 
constructions possess one disadvantage; since the corresponding functions were 
established purely analytically with the help of formulae, it is not possible to represent 
them by curves and understand geometrically why the divergence of the Fourier 
series occurs. 

Therefore, we will describe Lebesgue's example (only slightly modified in order to 
shorten the proof), where it is possible to represent the function graphically though 
only approximately. 

Let n1, n2,..., nk, ... be a sequence of integers which we shall define later. Let us 
suppose 

a0 = 1, ak = 7i!/i2 ...nk (fc = l ,2 , . . . ) . 



DIVERGENCE AT ONE POINT (LEBESGUE'S EXAMPLE) 129 

and define 

We shall later define a sequence of numbers ck, whilst now we only assume that 
Mo. 

Let 
f(x) = cksinakx in Ik9 

/(0) = 0, 

/ ( - * ) = / ( * ) . 

It is clear that/(x) is defined everywhere in [— π9π], it is continuous in each Ik 

and reverts to 0 at its end points, i.e. it has no discontinuities at finite points; finally, 
fix) -» 0 as Λ: -> 0 (Fig. 7) since ck \ 0, which means th^t fix) is continuous every-
where. 

We shall prove that its Fourier series converges everywhere in [—π, π] apart from 
x = 0. Since/(x) has only a finite number of maxima and minima in [δ, π] it is of 

T 
FIG. 7 

bounded variation in this interval (and also in [— π, — <5]). This means that its Fourier 
series converges at each point [—π,π], apart from x = 0. 

We will show that with a proper choice of the numbers ck and nk the series o(f) 
diverges at x = 0. 

As is known, for anyf(x) we have 
n 

1 f sin«* 
Sn{x J) = - /(* + t)—--dt + 0(1), 

—π 

which means that at x — 0 

5,(0,/) = ̂  | 7 ( , ) · ^ Λ + 0(1). 
π J t 

—π 

Our/(;c) is even, therefore 

2 f sin«* 
S„i0,f) = - f(f)——dt + oil). (46.1) 

o 
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We will show that by a suitable choice of ck and nk, we have 

f sinakt 
1 / ( 0 dt-^ oo as K-+CO. (46.2) 

If this is so, then Sak(0,f) -> + oo as k -> oo (as is evident from (46.1)) and then the 
series o(f) diverges at x = 0. 

In order to evaluate Jk9 we will divide it into three terms 

njak n/ak. 

C sinakt 

= J m—±-dt + 
J f(t)—^-dt + 

C sin akt , 

π/afc n/ak-i 

— A + «/£ + / t 

We have 

This means that 

sintffci 
<a f c . 

(46.3) 

(Λ) < max | / ( 0 I α , — = nck+1 = o(l) , (46.4) 

since cfc j 0. 
Up to now we have not defined the numbers ck and nk. We will now suppose that 

Hi = 2, c1 = 1. If c l 9 c 2 , . . . , cfc_! and w1? n2,..., «Λ_Ι are already defined, t h e n / ( 0 
is defined in Ιχ, I2,..., 7fc_i, i. e. in (n\ak_x, π). It is continuous in this semi-interval 
and t >njak_1, therefore [f(t)]/t is bounded. Consequently, if n is sufficiently large, 
then 

/ 
fit) 

sinnt dt 
t 

nlau-i 

can be made as small as desired (see § 19). 
Since ak — nln2 . . . «fc,thenifwl5 ...5 W f c l are already fixed, «fc is still at our disposal, 

which means that by increasing it we can make ak as large as desired, in particular 
such that 

ΙΛΊ < 
C sin akt 

J m—f-dt nlak _ i 

1 
(46.5) 

whence it follows that Jk = o(l) as k -> oo. 
It remains to estimate Jk. We have 

tt/ujC-.! 

T" - J 
njak 

Ck 

sin akt . ck cksmakt t dt = — 

n/ak-

S 
π/Ofc 

1 — cos2akt 
dt 

2 lnn" - 2 

π/ûtk . 

ck f cos2afc t C cosli 
dt. 

njak 
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But according to the second mean value theorem, taking into account that \jt is 
positive and decreases monotically in the range of integration, we find 

π/ajc _ i 

/ 
cos 2 a*/ 

t 
-dt < π 

Therefore from ck -* 0 it follows that 

/ 
π/öfc 

cos 2 aktdt 

J'k = yc k ln« f c + o(l) , 

whence from (46.4) and (46.5) 

< 
71 2d]ç 71 

Jk = yCfclnWfe + o(l) . 

We can now assume, provided ck = l/Vln ***> that ck [ 0 and 

Λ = y Vln«* + Ö(1) as k -> 00. 

Thus, the proof is concluded. 
From Fig. 7 it is evident that the function f(x\ as x approaches zero, performs 

more and more frequent oscillations; thus, it is found graphically that the divergence 
of the series a(f) at x = 0 is produced by the fact that / (x) is of unbounded variation 
in the neighbourhood of this point. 

Note. Later (in Chapter V, § 22) we will need the example of a continuous func-
tion, for which the Fourier series converges to zero everywhere in [0, 2π] external 
to some interval [a, b], converges at every point of (a, b) and diverges either only at a 
or only at b or at both end points of the interval (a, b), and possesses unbounded 
partial sums at points of divergence (we say briefly: it diverges without bound). All 
such examples are easily obtained, following the method of establishing Lebesgue's 
example. 

Indeed, if we suppose 
[ 0 in [ -π ,Ο] , 

[f(x) in [Ο,π], 

then 

Sm(P9<p) = jSn{09f), 

and therefore σ(φ) diverges without bound at x = 0; moreover, σ(φ) converges in 
0 < x < π and converges to zero in (—π, 0), which follows from the principle of 
localization (see § 33). If we suppose 

(paix) = <p(x - a), 

then we obtain a function for which σ(φα) diverges at x — a, converges to zero in 
[a — π, a] and converges in (a, a + π]. 
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The function Ψ(χ) = φ(—x) has a Fourier series which converges everywhere 
except at x = 0, where it diverges without bound, and moreover this series converges 
to zero at 0 < x < π. 

Therefore ψ ^ = ψ(χ _ b) 

has a series which converges everywhere except at x = b, where it diverges without 
bound, whilst it converges to zero in (b, b + π). 

Now let 0 < a < b < 2π. Let us construct λ(χ) in the following way. We choose 
the points a and y such that 0<cc<a<y<b and let 

λ(χ) = 
m (a, y), 

outside (a, b), 

λ(χ) is interpolated linearly by (a, a) and (γ, b) (Fig. 8). 
According to Steinhaus' theorem (§34) the series ο(λφα) is equiconvergent with 

λ(χ)σ(φα) and therefore it converges everywhere, apart from x = a, where it diverges 
without bound, whilst outside [a, b) it converges everywhere to zero (either because 
X{x) = 0 or because φα(χ) = 0). 

λ(χ) 

X 

ce 
FIG. 8 

In just the same way, if we denote by λ* (x) a function which is equal to 1 in (7, ft), 
to 0 outside (α, β) and can be interpolated linearly in (a, γ) and (b, β), where 

0 < a < γ < b < β < 2π, 

then we see that σ ^ * ^ ) is equiconvergent with λ*(χ)σ(Ψύ(χ)) and therefore it 
diverges without bound at x — b, converges everywhere apart from x = b and con-
verges to zero outside (a, b]. 

Finally, supposing ^ = ^ + χ , ψ ^ 

we see that F(x) is continuous and σ(/) diverges without bound at x = a and x = b, 
but converges at all the other points, and moreover converges to zero everywhere 
outside [a, b]. 

Note. The Fourier coefficients for those series which we established in §§ 45 and 46 
tend to zero according to a rather complicated law. In connection with the solution 
of some problems in the theory of integral equations, the question arose : is it possible 
to find some continuous even function/(x) for which 

°(f) = Σ tfftCOSHX, where \an\ JO 
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and moreover G(J) diverges at x = 0? Salem(14) gave an affirmative answer to this 
question. We will not give the proof here, since it is based on the study of some 
theoretical numerical inequalities, which would digress too far from the subject matter 
of this book. 

§ 47. Summation of a Fourier series by Fejér's method 

We have seen that even Fourier series of continuous functions have points of 
divergence (§§ 45 and 46). The question arises as to what extent the Fourier series 
can then be used for calculating the values of the function/(x)? Here, as is always the 
case with divergent series, it is natural to resort to one or other method of summation. 

Let us recall (see Introductory Material, § 6) that the functional series is said to 
be summable by the method (C, 1), if there exists a limit 

liman(x), 

where 

<>„(*) = — h " !>*(*), (47.1) 

and Sn(x) are the partial sums of the series. 
The application of this method to Fourier series is usually known as summation 

by Fejér's method, since Fejér first drew attention to the usefulness of Cesàro sums 
in this case and proved the fundamental theorem. Later it was generalized by Lebesgue. 

We know (see (31.3)) that the partial sum Sn(x) of the Fourier series of the func-
t ion/ (x) is expressed by the formula 

π 

s«(x)=^ \f(t)Dn{t-x)dt, 
—n 

where Dn(u) is a Dirichlet kernel. Therefore a Cesàro sum, defined by (47.1), should 
have the form 

n n 

on(x) = \ 17(f) — l - r Σ Dk{t -x)dt = i | 7 ( 0 ΐ ς ( ί - x) dt, (47.2) π J n + 1 £ZQ π J 
—π —π 

* » = ^ Τ Ί " Σ *>*(«)· (47.3) 

π 

°n(x) = - (f(x + u)Kn(u) du. (47.4) 
π J 

where 

Consequently 

The function Kn(u) is known as a Fejér kernel·, we will now find an appropriate 
expression for it. 
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Since 
• / M 

e i n I M _L -— I */ 

cos«« —cos(« + l)w DM = 
sin In + y I u 

u u 
2 sin — 4 sin2 — 

2 2 

then 
. 1 " cosku — COS(Ä: + l)w 1 — cos (n + \)u 
w n + 1 . \ u . u 

k=° 4 s i n 2 - - ( « + l ) 4 s i n 2 -

l sin(n + I) — 
U \ 2 

2{n + 1) x u 
sin — 

Thus 

j /sin(/i + 1) — 

*<«> = 2 0 7 Τ Ί ) 1 — » · ( 4 7 ·5> 

s i n y 

From this expression we immediately derive a number of properties of the kernel. 

(i) KM > o. 
This property will play an essential role later. 

(2) We have 
* . ( « ) < - < 9 f a f n , for 0 < | Μ | < π , (47.6) 

2 ( « + l ) s i n 2 | A » + M « 

and therefore 

A-B(tt) = O ί—Λ for 0 < \u\ <π (47.7) 

and 

Kn(u) < 2(yz ^ 1 ) g 2 for 0 < δ < | u\< π, (47.8) 

whence for any δ > 0, supposing 

i/n(<5) = max Kn(u), 

we have 
lim M„(<5) = 0. (47.9) 

« - » 0 0 

(3) We have 
π 

— I Kn(u)du = 1. (47.10) 
π J 

— π 
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This follows from (47.3) and from 

- I Dk(u)du = 1 (k = 0 ,1 ,2 , . . . ) . 
71 J 

(4) If Ô > 0, then 

lim - f Kn(u)du= 1. (47.11) 
w-»oo π J 

-Ô 

This immediately follows from (47.9) and (47.10). 
Starting from these properties, we can prove the following theorem, concerning the 

summation of Fourier series by Fejér's method. 
FEJÉR'S THEOREM. If X is a point of continuity of the function f(x) or a point of dis-

continuity of the first kind, then at this point a{f) is summable by Fejér's method to 
f(x) or to [f(x + 0) + f(x — 0)]/2, respectively; if (a, b) is an interval where f(x) is 
continuous, then o{f) is uniformly summable by Fejer's method tof{x) in any interval 
[a, β] lying within the interval (a, b). 

Finally, iff (x) is everywhere continuous, then its Fourier series is uniformly summable 
by Fejér's method in [ — π, π], i.e. ση(χ) uniformly converges tof(x) in this interval. 

In order to prove this theorem we will turn to a lemma which is also useful in 
other circumstances. 

LEMMA. Let 
71 

fnix) = ^ jf(x + tW„(t) dt, (47.12) 
—π 

where the function Ψ„(t) possesses the following properties: 

(1) ¥^„(0 is an even function. 

(2)J | 3 /
I I ( / ) | Î K C ( H = 1 , 2 , . . . ) where C is a constant. 

(3) Supposing for à > 0 
Μη(δ)= sup | f n ( 0 l , 

<5<|ί|<π 

we have 
lim Μη(δ) = 0; 
H-»00 

iJ* ( 4 ) - \Wn{t)dt = 1. 

Then: if x is a point of discontinuity of the first kind for f(x), then 

, , , / ( * + 0 ) + / ( * - 0 ) 
fn(x) -> as n -> oo, 

fn(x) -+f(x) at each point of continuity off(x). 
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If f(x) is continuous in (a, b\ then fn(x)-*f(x) uniformly in (a, ß) for any 
[a, ß] c (a, b). 

To prove this lemma we will note first that from property (4) of the function Ψ„(ί) 
we have 

fix + o) + fix - o) 1 f/(* + Q)+/(*-Q) ψ (Λ . 
2 ÎÏ J 2 " W 

« 

ij^ + 0)+f(x-0W„(t)dt (47.13) 

because of the evenness of Ψη(ί). From (47.12) and the evenness of Ψη(ί) we conclude 
that 

 (47,i4) 

Therefore from (47.13) and (47.14) 

/(x + 0 )+ / ( x -0 ) 
/ . ( * ) j 

= - f [/(* + 0 + / ( * - t) - f(x + 0) - fix - 0)]¥*.(0 rff. (47.15) 
71 J 

0 

We will show that the integral on the right-hand side of (47.15) tends to zero as 
n -► oo and moreover if f{x) is continuous in (a, b), then it tends to zero uniformly 
in [a, β], where a < a < β < b. For this purpose we will choose a number δ such 
that 

l/(* + 0 - / ( * + 0)|<e, _ _ 
i /v ,\ / · / AM a t 0 < * < < ) . (47.16) l / ( * - 0 - / ( * - o ) | <

e 
This is possible for any fixed x; iff(x) is continuous in (a, b) (in this case f(x + 0) 
= f(x — 0) = / ( x ) ) , then it is possible to choose δ so that it is independent of x, 
a < x < β and the inequalities (47.16) hold. Having chosen δ in this way, we divide 
the integral of formula (47.15) into two : integral Ix in the interval (0, à) and integral I2 

in the interval (<5, π). We have on the basis of (47.16) 

π 

|/,| <2eJ 1^,(01 rfi<2eC 
o 

from property (2) of the function Ψη(β). 
For I2 we find 

| / 2 | < MM j{\f(x + 01 + l / (* + 0)1 + | / ( x - 01 + l / ( * - 0)\}dt. (47.17) 
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For constant x the integral in (47.17) is finite and the factor in front of it tends to zero 
because of property (3) of the function Ψη(ί), which means that I2 -» 0. Moreover, 
if x e [a, j8] cz (a, b), then the integral in (47.17) for any x does not exceed 

n 

j |/(0I dt + 2n\f(x)\, 
—n 

and since/(JC) is continuous in (a, b) and is therefore bounded in [a, jS], then I2 -* 0 
uniformly. The lemma is completely proved. 

In order to derive Fejér's theorem formulated above from the above lemma, it is 
sufficient to prove that the Fejér kernel satisfies the properties given in the lemma; 
then, supposing fn(x) = on(x), we arrive at the required result. 

But property (1) for a Fejér kernel has been fulfilled; (3) and (4) have already been 
proved by us and (2) follows from the fact that for a Fejér kernel 

π π 

J* \Kn(t)\dt= \Kn{t)dt = n 
—π —π 

since Kn(t) > 0 and from property (3). Thus Fejér's theorem is completely proved. 

§ 48. Corollaries of Fejér's theorem 

From Fejér's theorem, it is possible to deduce a number of interesting corollaries. 
First, it gives a new proof of Weierstrass's classic theorem on the approximation of 
a continuous function by means of a trigonometric polynomial (see § 27). 

Indeed, since we have proved that for a continuous/(x) the function on(x) tends 
uniformly \of(x), then having chosen n sufficiently large, it can be stated that 

\f(x) — on{x)\ < ε, — oo < x < + oo. 

But on(x) is evidently a trigonometric polynomial and therefore the theorem is proved. 
We will also note that method (C, 1) is regular (see Introductory Material, § 6) i.e. 

the convergence of a series to a value S implies its summability by method (C, 1) to 
the same value S. From this, it immediately follows that: 

If o(f) converges at a point of continuity of the function f(x), then it converges to 
f(x); similarly, at a point of discontinuity of the first kind, ifo(f) converges, then it 
certainly tends to [f(x + 0) +f(x — 0)]/2. 

Finally, Fejér sums make it possible in some cases to pass judgment on the normal 
partial sums of the Fourier series. Thus, for example, it is possible to prove the 
theorem : 

For the function f (x) of bounded variation, the partial sums of the series a(f) are all 
bounded. 

In order to prove this, we will note first that if 

m <f(x) <M, - π < χ < π , (48.1) 

then for Fejér sums we also have 

m < ση(χ) < M, — π < x < π. (48.2) 
6 Bary I 
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Indeed, taking into account that the Fejér kernel is positive, we immediately derive 
from (47.4) and (48.1) that 

m 

π it 

- f Kn(t) dt < ση(χ) < M\- f Kn{t) dt, 
π J 7t J 

and then formula (47.10) immediately shows the truth of our statement. 
Having noted this, we will now compare on(x) and Sn(x). We have (see Introductory 

Material, § 6) 
1 

Sn(x) - on(x) = — X k(akcoskx + bk sinkx). (48.3) n + 1 k=\ 
Hence it follows that 

\Sn{x) - on(x)\ < _ i — f k(\ak\ + \bk\). 
n -r A fc=l 

But if f{x) is of bounded variation, then as we know (§ 22) 

V V 
Wk\ <-γ and \bk\ <~γ> 

where F is the complete variation off(x); therefore 

\Sn(x)-on(x)\ <2V, 
whence 

2 V - M < Sn(x) < 2 V + M. (48.4) 

Formula (48.4) not only proves that the partial sums of the Fourier series for func-
tions of bounded variation are all bounded, but it also gives the bounds within which 
they are contained in terms of the bounds of this function and its complete variation. 

Note. We have seen (see (48.1) and (48.2)) that iff(x) is contained between m and M 
in an interval of length 2π, then on(x) (n = 1, 2,. . .) are also contained in this interval 
between m and M. Later we will find it useful to estimate ση(χ), knowing only the 
bounds off(x) in some interval [a, b]. We will prove that: 

m <f(x) < M in a < x < b, 

then for any δ > 0, N0 (dependent on δ) is found such that 

m - δ < ση(χ) < M + δ at n > Ν0(δ), a + δ <χ <b - <5. (48.5) 

Indeed, from (47.4) we find that 
-Ô Ô 

°n(x) = - I / ( * + u)Kn(u) du + - fix + ü) Kn(u) du 
71 J 71 J 

— π —δ 

π 

+ - [fix + u)KM du = /„' + /„" + C (48.6) 
π J 
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From (47.7), it follows that 

— Ô π 

I'„ = O ( i - ) j I / ( * + u)\ du = O {^j j\f(u)\du = o(l) (48.7) 

— 7i —n 

and a similar result holds for I„. 
To estimate I„ we note that if a + ô<x<b — δ and |w| < <5, then x + w 

G [a, b] and then 

m — ί Kn(u) du<i: <M— I #„(w) du. 
71 J 71 J 

But we know from (47.11) that 
Ô 

lim— I Kn(u)du= 1. 

- < 5 

This means that it is possible to choose N0 (dependent on δ) so large that, for example, 
we have 

δ 
m - j < / ; <M + j , n>N09 

and moreover (see (48.7)) 

|/„'| < y and I d < y , 

whence we see from (48.6) that (48.5) is proved. 

§ 49. Fejér-Lebesgue theorem 

Fejér's theorem, proved in § 47, makes it possible to judge the summability of the 
series o(f) only at those points where/(x) is either continuous or possesses a dis-
continuity of the first kind. However, an arbitrary summable function cannot possess 
a point of the given type. Lebesgue generalized Fejér's result and proved the following 
theorem. 

FEJÉR-LEBESGUE THEOREM. For any summable function f (x), the series o(f) is sum-
mable almost everywhere by Fejér's method to fix). 

To prove this theorem, let us assume 

ΨΛΟ = f(x + t)+ f(x - 0 - 2/(x) (49.1) 
and t 

Φ*(0= \\cpM\du. (49.2) 
o 

We will prove that the series σ(/) is summable by Fejér's method to fix) at any point x 
where 

Φχ(0 = oit). (49.3) 

file:////cpM/du
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For this we note (see § 47) that 
π 

aa{x) - f{x) = i f [f{x + t)+ fix - 0 - 2fix)]K„it) dt 
π J 

-j<px(t)K.(Qdt (49.4) 

and we will prove that when (49.3) is fulfilled the integral on the right-hand side of 
(49.4) tends to zero. For this purpose we note that 

since 

and 

|A.(0l <2n ( » > ! ) , 

|At(0l < & + y < 2» for any k<n, 

(49.5) 

Knit) = —Y Σ Dkit). n -t- l k=zQ 

Therefore 

I l /n 

- J <px(t)Kn(t)dt 

due to (49.3). 
Also, because of (47.6) 

l/n 

In f 2« / 1 \ 
< — \<px{t)\dt = —Φχ - = o(l) (49.6) 

π J π \n/ 

-Z <Px(t)Kn{t)dt 
71 J 

< 
π C à dt 

(49.7) 

Un 

For the integral on the right-hand side of (49.7) we will carry out integration by parts; 
we obtain, again operating on (49.3) (see Introductory Material, § 11) 

π 

~2 

τ C d 

n J '*<'>' 7 
dt π 
τ = 17 

1/« 

ο ( ι ) + 1° ί ί ΐ )=° ( ΐ ) · 

2π ΐ - ,.dt 

Un 

(49.8) 

MM 

From (49.6) and (49.8), it follows because of (49.4) that 

<*n(x) - / ( * ) = Ö ( 1 ) 

at every point, where (49.3) is fulfilled. 
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It remains for us to prove that the condition (49.3) holds almost everywhere. But 
in § 15 of the Introductory Material it was remarked that this relationship is fulfilled 
at any Lebesgue point and consequently almost everywhere. 

The Fejér-Lebesgue theorem is proved. 
As a corollary, we obtain the following important theorem. 
Ifo(f) converges in some set E, mE > 0, then its sum equals fix) almost every-

where in E. 
Indeed, we know that method (C, 1) is regular. Therefore at the point where σ( / ) 

possesses a certain sum S, it should be summable to this value S by Fejér's method. 
But since by Fejér's method it is summable tof(x) almost everywhere, then the set 
of points of E, where the sum of the series o(f) differs from/(x), is of measure zero. 

Note. We have seen that the series o(f) is summable by Fejér's method at any 
Lebesgue point. It is known that a these points/(x) is the derivative of its indefinite 
integral. The question can be raised whether the series o{f) is summable by Fejér's 
method at a point, where the latter condition is fulfilled. Lebesgue(1) proved that this 
should not, however, occur, though here we have summability (C, 2). 

§ 50. Estimate of the partial sums of a Fourier series 

In § 49 we have proved that at the points where the following condition is fulfilled, 

h 

ΦχΟΟ = J | / ( * + u) + / ( * - u) - 2f(x)\ du = o(h), (50.1) 
0 

the series o(f) is summable by Fejér's method. It was also remarked that condition 
(50.1) is fulfilled almost everywhere. Now we want to estimate the increase of the 
partial sums Sn(x) at these points. 

We will prove that at any point x, where (50.1) is fulfilled, we have 

Su(x) = oQnri). (50.2) 

Consequently, estimate (50.2) also holds almost everywhere. 
We have seen (see (37.9)) that 

Ô 

1 f sinnu 
Sn(x) - fix) = - [fix + «) + fix - u) - 2f(x)] du + o( l) , (50.3) 

71 J U 
0 

where o(l) tends to zero and δ is any positive given number. Supposing 
<p(u) = f(x + u) + f(x — w) — 2f(x), we have 

Un 
f sin H w Γ sinnu Γ 

J l<K*)l \du = J \<p(u)\ du + l \φ(ύ)\ 
sin WH 

\du 

0 1/n 

Un Ô 

n\ |ç>(fO| du + J \φ(μ)\ -du. (50.4) < 
0 Un 
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Then from (50.1) 
h 

#*(*)= S \9(u)\du> (50.5) 

therefore (for brevity's sake, we will dispense with the index x) 

l/n 

j\m\d«-o(±)-0(±) 
and 

(50.6) 

(50.7) 

l/n l/n 

From (50.4), (50.6) and (50.7) it follows that 

Jl<K«)l sin AM 
du < o + 

φ(δ) 
+ ηΦ\ — (vW 

l/n 

Φ(ή 
dt 

= 0(1)+ , , 2 

1/« 
/ * 

Φ(0 
ί/ί. (50.8) 

If for a given ε > 0 we choose δ so that Φ(ί) < st for 0 < t < <5, which is possible 
from (50.1), then 

f Φ(ί) Γ ί/ί 
— j — dt < ε — = εΐηηο = o(lnn), (50.9) 

Un Vn 

because ε is as small as desired. But o{\) is also ö(ln n), therefore from (50.3), (50.8) 
and (50.9) we find that 

\Sn(x)-f(x)\ =oQnn). 

But since x is fixed, then/(x) is constant, i.e. \f(x)\ = o(ln n) and finally 

Sn(x) = o(\nn), 

which is what was required to be proved. 
Note. In § 36 it was proved that for a bounded function, which also means a con-

tinuous function, we have for all x and n > 1 

\Sn(x)\ < CM Inn (n = 2, 3, . . . ) , 

if \f{x) | < M (C is an absolute constant). If /(x) is continuous, then condition (50.1) 
is fulfilled and even uniformly; therefore, for continuous functions the estimate made 
earlier is replaced by a stronger one: 0(lnn) is replaced by o(lnn). 
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§51. Convergence factors 

It is usually said that the numbers {μη} are convergence factors for some series 

u0(x) + ux(x) + ·- + un(x) + ··· 

in the interval [a, b], if the series 
Σηη{χ)μη 

converges almost everywhere in [a, b]. 
The results of §§ 49 and 50 allow us to prove that it is possible to choose as conver-

gence factors for a Fourier series in [—π9 π] the numbers 

(μ0 and μ± can be chosen as desired); i.e. we have 
THEOREM. Ifak and bk are Fourier coefficients (k = 1, 2,...) then the series 

™ ak cos kx + bk sin kx 

converges almost everywhere in [ — π, π]. 
To prove this we note that in § 50 it was proved that Sn(x) = o(lnw) almost every-

where. Therefore because the sequence μη is convex (the definition and properties of 
convex sequences are given in § 3 of Introductory Material), then it remains to apply 
Theorem 6 (see Appendix, § 12), assuming that un(x) = an cosnx + bn sinwx. 

§ 52. Comparison of Dirichlet and Fejér kernels 

We know (see §§ 45 and 46) that continuous functions exist in which the Fourier 
series diverges at some point. On the other hand, for any continuous function/(x), 
the series o(f) is summable tof(x) at any point (see § 47). 

We want to explain why such a phenomenon occurs and for this purpose we will 
compare the Dirichlet and Fejér kernels. As is known 

π 

S,{x) = \ J7(0D.(t - x)dt (52.1) 
— n 

and 
π 

σ " W = ^ / / ( i ) Kn {t ~ x) dl ' ( 5 2 · 2 ) 

— π 

where Dn(u) is a Dirichlet kernel and Kn{u) is a Fejér kernel. 
If at the point x0, the series o(f) converges to f(x), then this means that 

Sn(*o) -*f(xo)l if it is summable by Fejér's method tof(x)9 then on(x0) -►/(xo)· 
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It is natural, therefore, to pose the question thus: le t / (x) be continuous and 

π 

/ . ( * ) = ff(t)0a(t-x)dt, (52.3) 
— π 

where Φ„(ύ) is some function which we will also refer to as a kernel; we ask ourselves — 
what properties of this kernel influence the equality 

limfn(x) = / ( * ) 
n-ïco 

or the existence of points x0 where fn(x0) does not tend tof(x0) or in general does 
not tend to any limit? 

Before answering this question we will show that the problem of convergence of a 
Fourier series with respect to an arbitrary orthogonal system leads to another question 
of the same type and we will therefore solve both problems together. 

Let {(pn(x)} be some orthonomal system in (a, b). In order to study the convergence 
of a Fourier series for some function/(x) with respect to this system, we will consider 
the partial sum of this series, i.e. 

n 

Sn(x) = Σ^ΨΛΧ)9 
fc=0 

in other words, 
b b 

sn(x) = Σ <Pk(x) J f(f)<pk{t)dt = I f{t) 
k=0 a a 

Supposing 
n 

Φη(*,χ) = ΣΨΜΨΛΧ), 

we name the function Φ„(ί, χ) the kernel of the system {<pn(x)}. We have 

b 

S.(x)= \f{t)0n{t,x)dt. (52.4) 
a 

Lebesgue was the first to pay attention to the importance of investigating the be-
haviour of functions of the type 

b 

Qn(x)= j\0H(t,x)\dt. (52.5) 
a 

which are now usually called "Lebesgue functions" for the given system. The role of 
these functions in the problem of the convergence of a Fourier series becomes 
extremely clear, when the theorem is proved (see Lebesguec2]). 

THEOREM. If for some point x0 the sequence Qn(x0) (n = 1,2,...) is unbounded, then 
there exists a continuous function f(x) for which the Fourier series with respect to the 
system {φη(χ)} diverges without bound at the point x0. 

This theorem can be proved immediately, if we first establish the validity of the 
following more general assertion : 

LEMMA. Let b 

fn(x,f) = jf(t)0n(t,x)dt, (52.6) 

Σ <Pk(t)<Ph(x) 
Lk=0 

dt. 
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where Φ„(ί, x)for every fixed x is summable with respect to the variable t andf(f) is 
bounded. Then, if 

limQn(x0) = + oo, (52.7) 
« - » 0 0 

a continuous function f\x) is found for which 

to|/„(*o,/)l= + 0 0 . (52.8) 
71-»00 

Indeed, first, supposing that for a given n 

g(t) = sign<PB (*,*<>), 
we have 

b b 

Â(xo, g)= j g(t)0n(t9 x0) dt= j \Φη(ί, x0)\ dt = ρη(χ0). (52.9) 
a a 

This means that for any n there exists a function g(t) such that \g(t)\ < 1 and for it 

/ . (*o,*) =  (52.10) 

If this were the same function g(t) for all n and if it were continuous, the theorem 
would be proved, because from (52.7) we would have 

lim\fn(x0,g)\ = + 0 0 . 

Therefore, we will first replace g(t) by a continuous function g* (i), for which/n(;x;o, g*) 
is "large" and then we will transfer various functions for various n to a single function. 

We will first choose for a given n a continuous g*(t) such that forfn(x, g*) we have 

/ . (*o,S*)>±ft . (*o) . (52.11) 

For this it is sufficient to take ε such that 

j \ΦΜ(β, Xo)\ dt<- ρη(χ0)9 (52.12) 

E 

if m E < ε, which is possible, since for fixed n and x0 the function under the integral 
sign is a summable function of t, and therefore its integral is as small as desired, if 
the set over which the integration occurs is of sufficiently small measure. Because of 
the C-property we can find a continuous function g*(t) coinciding with g(t) in the 
perfect set P, mP > (b - a) — ε, such that |g*(OI < 1· Then for this function 
from (52.6) 

b 

fn(Xo,g*)= jg*(t)0n(t,Xo)dt. 
a 

From (52.12) it follows that 

l/.(*o, 8*) -f.(xo,g)\ = I S fe*W - *(O]0.C, *o) dt\ 
CP 

< 2 J \Φη(ί, x0)\dt<- Qn(xo) (52.13) 
CP 

which means that (52.11) follows from (52.9) and (52.13). 

6a Bary I 
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For all n we will denote by gn(t) the function which possesses the properties: 

(a) gn(t) is continuous 

(b)|ft,(OI < 1 
(c)fn(x09gn) > iQn(Xo)· 

We have already seen that it is possible to establish such a function for all n. Now 
let εη be a sequence of numbers such that 

00 00 J 

εη > 0, Σεη < + °°> Σ εκ<-^εη (52.14) 

(for example, it is possible to take en = 1/771), let nk be an increasing sequence of 
integers which we will select later. Then, supposing 

/(*> = !>*&*(*) . (52·15) 
k = l 

we see tha t / (x ) is continuous, since gn(x) are continuous and all |g„(x)| < 1 and 
£ sk < +00, which means that the series (52.15) converges uniformly. It is clear that 

h oo oo b 

Σ %(0Φ.(^ο)Λ= Σ< 
Ä : = l Ä : = l 

fn(x0,f) = / Σ β*«·*(0<Ρ-('.*ο)Λ = Σ £ * /β·*(0<Ρ.(ί.*ο)<ίί 

00 

= Σ £kfn(X0,gnk)-

Here the term-by-term integration is valid because of the uniform convergence of the 
series (52.15). 

We will now show that for a suitable choice of the numbers nk we will have 

ΗΪ | / Β (*ο , / ) Ι = + 0 0 . (52.8) 
« - » 0 0 

If for even one of the functions gm(x) we had 

lim \fn(x0,gm)\ = + c o , 
«-»oo 

then the theorem would be proved. We will assume that this is not the case. Let us 
define 

lim \fn(x0,gm)\ = ym- (52.16) 
« - » 0 0 

We will choose by induction the numbers nk such that 

£kQnk(xo)-^ °° (52.17) 
and 

*-i i 
Σ εΡ?ηρ < Ty £kQnk(

Xo)' (52.18) 
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This is possible, since {ρη(χ0)} is unbounded due to (52.7), which means that the num-
bers nk can be chosen such that Q„k(x0) -* oo sufficiently quickly for conditions (52.17) 
and (52.18) to be fulfilled. Since 

/ . \X0, TLtpgnA 
I k - l 

Y£pfn(X0,gnp) 
k-\ 

< 2 Σ £
Pynp 

p=l 

as n -> oo due to (52.16), it is possible to choose nk so large that 

k-l 

> i 
P 

/ . «k (*0, Σ CpgiiJ 
k-l 1 

< 2 Σ epyBp < -7 skQnk(x0) 
p=l ° 

(52.19) 

because of (52.18). 
On the other hand 

( 00 \ I 00 I 

*o , Σ ερ8ηΛ < Σ epQnk(*o) < -T£kQnSxo)> (52.20) 

p=k+l I I

 p=k+l ° 

because |gnj,(x)| < 1 which means that 

i8ηρ(*)Φ**(*> xo) dt < J | < z > n k ( i , x 0 ) l ^ = e„k(*o) 

and moreover, we have (52.14). 
Hence because of property (c) of the function gn(x% (52.19) and (52.20) 

l / » k ( * 0 , / ) l >fnk(Xo,ekgnk) - \fnk\X0, Σ £pZnp) ~ \fnk ( * 0 , Σ ep8nk) 
I \ ^=1 / | | \ *+i / | 

> y ß i k & k W - -jr*kQnk(
xo) - -g-e*0iik(*o) > -g-ßjk^fci^o), 

and this tends to + oo as fc -^ oo due to (52.17). This means that (52.8) is valid and the 
theorem is proved.| 

The validity of Lebesgue's theorem formulated above follows quickly from this. 
Indeed, if in the proved lemma the role played by 0n(t, x) is the kernel of the given 
orthogonal system, then fn(t,f) is converted into the partial sum of the Fourier 
series of f(x) with respect to this system (due to (52.4) and (52.3)) and therefore, if 
at some point (52.7) is fulfilled, then a continuous/(x) is found with a Fourier series 
which diverges at this point. Thus, Lebesgue's theorem is proved. 

Let us now consider specially the case of a trigonometric system. If it is normalized, 
i.e. if the following system is taken 

1 cosx smx COS 72 X SHI 72 X 

\2TC \J n Vn \J n \J it 

t Since on multiplying/ (t) by some constant fn(x9f) is multiplied by the same constant by virtue 
of (52.6), it is always possible to find / (x) to satisfy the conditions of the lemma and such that 
1/ (t) | < 1. This note is not necessary for Lebesgue's theorem but will be useful later in Chapter IV. 
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then the role of its kernel is played by the function 

1 JL coskxcoskt + sink x sinkt 
Φ»(ί' *> = ΐη + Σ1 π 

1 1 " 1 
= -^ζ + — Σ «»*(' - *) = - D«(t - *). 

JL71 71 £ = ι 71 

and therefore the Lebesgue functions (see (52.5)) have the form 

Qn(*) = - \\Dn{t-x)\dt. 
π J 

— n 

But because of the periodicity of Dn(u) we have 

π 

&.(*) = - j \D.(t)\dt, 
—n 

i.e. the Lebesgue functions do not depend on x and are converted into the Lebesgue 
constants Ln considered earlier (see § 35). But we know that lim Ln = + oo (because 

Ln « (4/π2)1η«) and therefore we now see that the existence of continuous functions 
with Fourier series, divergent at some point, is explained by the fact that the Lebesgue 
constants increase without bound with increase in n. We also note that since 

Qn{x) = Ln 

for any x, then it is possible for any point x to find a continuous/(x) with a Fourier 
series divergent at this point. 

Now we will return to the question of the summability of a Fourier series by 
Fejér's method. Comparing formulae (52.5) and (52.2), we see that if for 

ρ„(0 = - \Kn(t - x)\dt 
7C J 

(52.7) were fulfilled for even one value of x0, then it would be possible to find a con-
tinuous/(x) for which on(x,f) would not tend to any finite limit as n -> oo, i.e. o(f) 
would be unsummable by Fejér's method at this point. But due to Kn(u) being 
periodic and positive, we have 

?«(*) = ~ J Kn (0 dt, 

and then due to property (3) of Fejér kernels (see § 47) 

ρη(χ) = 1 

for all n and x. Thus, for a Fejér kernel the fulfilment of (52.7) at no point whatever 
is impossible. 
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In § 2 of Chapter VII we will see why Fejér's method is applicable almost every-
where (Fejér-Lebesgue theorem, § 49) whilst everywhere divergent Fourier series exist 
(Chapter V, § 20)—this is also the result of the different behaviour of Fejér and Dirich-
let kernels. 

ky 
fl+o 

FIG. 9 

To conclude this section, we think it appropriate to represent Dirichlet and Fejér 
kernels geometrically (see Figs. 9 and 10). 

§ 53. Summation of Fourier series by the Abel-Poisson method 

We will refer here to yet another classic and very important method of summation 
of Fourier series. For this we recall (see Introductory Material, § 7) that the series 

00 

Σ un(x) is said to be summable by Abel's method at a point x0 to the value S, if for 
Λ = 0 00 

any r, 0 < r < 1, the series ]T un(x0)r
n converges and supposing 

n - 0 

we have 
\imS(x0, r) = S. 
r-»l 

Poisson applied this method of summation to Fourier series, therefore the given 
method when it is applied to trigonometric series is usually referred to as Poissorfs 
method or the Abel-Poisson method. 

Since we know (see Introductory Material, § 7) that Abel's method is stronger than 
the method (C, 1), then the following theorem immediately results from Fejér's 
theorem and the Fejér-Lebesgue theorem (see §§ 47 and 49) : 
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THEOREM. For any summable f(x) the series a{f) is summable almost everywhere by 
the Abel-Poisson method to thisfunctionf(x); it issummable to %[f(x + 0) +f(x — 0)] 
at any point of discontinuity of the first kind and to f{x) at any point of continuity. 

It can be seen that apart from these theorems little more need be said concerning 
the summation of Fourier series by Poisson's method; however, we will see in § 55 
and § 56 that it is possible to obtain very much deeper results. We will first derive 
some auxiliary formulae which will be necessary for us there. 

For any trigonometric series 

a0 °° 
~^r + Σ (an COS/ÎJV + bn sinnx) (53.1) 
2 «=i 

"Poisson sums" are the names given to the functions 

a0 °° 
f(r, x) = — + Σ (an cosnx + bn sinwx)^, (53.2) 

when the series on the right-hand side of (53.2) converges. In the case when the series 
(53.1) is a Fourier series for some function f(x), these functions can be expressed in 
terms off(x) in the integral form, in the same way as was done for the partial sums 
and Fejér sums of a Fourier series. We will find this in the next section. Also in § 57 
we will use the results obtained to solve an important problem, called Dirichlet's 
problem. 

§ 54. Poisson kernel and Poisson integral 

We will first find a suitable expression for/(r , x) if (53.1) is o(f). We have 

π η 
1 f if 

an = — f(t)cosnt dt, bn = — f(t) sinnt dt, 
n J π J — n —n 

and therefore 
π η 

1 f 1 °° Γ 
f(r, x) = 2^ J /(/) * + -!>*) f(0 C°S"(' - x) dt. 

— π —η 

00 

But since 0 < r < 1, then the series £ rn cosn(t — x) for a given r converges uni-
«=i 

formly with respect to t and therefore according to Lebesgue's theorem (Introductory 
Material, § 14) it is possible to integrate it term-by-term even after multiplying by 
f(x); therefore

 π 
1
 Γ Π 

f(r,x) = - I f(t) 
71 J 

— + Σ rn cosn(t — x) 
2 n=\ 

dt. (54.1) 

Let us now find a simpler expression for the series given in the square brackets 
in (54.1). Let χ œ 

P{r,a) = — + £ r " c o s « a . 
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We consider the auxiliary series 

y+ £*" 
and suppose that z = r(cosa + /sina). If \z\ = r < 1, then this series converges and 

1 ^ n 1 z l+z l - r 2 + 2/rsina 

2" +ίιΖ° = 2" + 1 - z = 2(1 - z) = 2[1 - 2 r c o s a + r2] * 

But, on the other hand 

1 oo } oo 

— + Σ z" = T Σ ^ ( c o s w a + * sinwa). 

Therefore, separating the real and purely imaginary parts, we find 

1 i° 1 - r 2 

+ Σ r" coswa = 2 „ti 2[1 - 2rcosa + r2] 
and 

" r sina 
> rw sinwa = r . 

wri 1 - 2r cosa + r2 

Thus we have established that 
1 - r 

2[1 - 2rcosa + r2] 
Ρ ( '> *) = ο η _ ο . ^ ^ 2 Ί · (54.2) 

This expression is known as a Poisson kernel and the expression 

Ö0-. «) = i o - ^ ^ , ,2 (54.3) 
r sina 

1 — 2r cosa + r2 

as the kernel conjugate to it. 
Later, the fact that the Poisson kernel at 0 < r < 1 is a positive value (as is also 

the Fejér kernel) will be very important. In fact, since 

1 - r2 > 0 and 1 - 2r cosa + r2 = (1 - r)2 + Ar sin2 — > 0, 

then P(r, a) > 0 at 0 < r < 1. 
Let us return to formula (54.1). We have 

π η 

fir, x) = I J/(0 />(,,, - ,) Λ = ± J/(0 χ_2ΐ1;{;
2_χ) + ΐ2 dt. (54.4) 

—π — π 

The integral on the right-hand side of (54.4) is known as a Poisson integral 
It is very important to understand the meaning of a Poisson kernel geometrically 

(see Fig. 11). For this purpose we will take a plane circle with centre at the origin and 
unit radius; if a radius is drawn through the point M with polar co-ordinates (r, ω) 
and the perpendicular is drawn to it, then denoting by Q one of its points of inter-
section with the circumference, we find 

MQ2 = 1 - r2. 
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If P is a point with polar co-ordinates (1, t), then 

MP2 = 1 - 2rcos(co - t) + r2, 
and therefore 

1 -r2
 = /MQ\2 

1 - 2rcos(co - t) + r2 \MP) ' 

Thus, we again see that the Poisson kernel is a positive magnitude, and the Poisson 
integral can be written in the form 

n 

FIG. 11 

Theorem §53 could be expressed thus: if the point M(r,œ) tends to the point 
JP(1, ω), i.e. to the point on the circumference lying on the same radius, then for almost 
all values of ω we have 

/ ( / · , ω ) - > / ( ω ) as r -> 1 

and this is true, in particular, for all those ω where f(co) is continuous. But we want 
to prove that a considerably more general statement holds. We will now turn to this. 

§ 55. Behaviour of the Poisson integral at points of continuity of a function 

Let us prove the following theorem due to Fatou[1]. 
THEOREM. Iff(co) is continuous at some point P( l , ω0), then for the Poisson integral 

π 

f(r,œ) = ̂  jf(t)P(r,œ-t)dt (55.1) 
— π 

we have 
/(Γ,ω)->/(ω0) 
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no matter how M(r, ω) tends to P( l , ω0), provided it remains inside the circle of unit 
radius. 

First we will note the following properties of a Poisson kernel: 

(a) P(r, t) > 0 at any t and 0 < r < 1. 

(b) We have 
π 

— f P(r,t)dt = 1. 
π J 

—π 

Indeed from (54.4) supposing/(i) = 1, we find that 

π η 

1 = — f p(r, t -a))dt= — f P(r91) dt. (55.2) 
n J π J 

■ —n —n 

(c) If 111 > <5, then we have 

m(r, δ) = max P(r, t) -» 0 as r -> 1. (55.3) 
( 5 < | ί | < π 

Indeed 
1 - 2rcos* + r2 > 1 - Ircosà + r2 for δ < \t\ < π , 

and therefore 
1 - r2 

0 < P(r, t) < — -z i ^ , 
v ' J 2(1 - 2r coso + r2) 

which also proves our statement. 
From this and from (b) it immediately follows for any à > 0 that: 

(d) 

l im— P(r9t)dt = 1. (55.4) 
0 

Indeed, due to the evenness of P(r, t) we have from (b) 

π ô n 

1 = — f P(r, t)dt = — ί P(r, i) dt + — f P(r, t) dt, 

o o Ô 

and the latter integral does not exceed (2/π) m(r, δ). 
Now in order to prove the theorem we note first that, multiplying (55.2) by/(co0), 

we have 
n 

/(o»o) = — I /(o>o) P(r,t- ω) ί/ί. 
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Subtracting this equation from (55.1) we find 

π 

fir, ω) - / (ω 0 ) = ~ j [fit) - / K ) ] P(r, t - ω) dt. (55.5) 

— π 

Let ε > 0 be given. We choose δ so that 

1/(0 - / ( ω 0 ) Ι < ε for \t - ω0\ < δ, (55.6) 

and divide the integral (55.5) into three: for the range ω0 — δ < t < ω0 + δ and for 
the ranges ( — π < t < ω0 — δ) and (ω0 + δ < t < π). Due to the Poisson kernel 
being positive, and from (55.6) and (55.2) we have 

ωο + δ 

— f [fit) ~ /(o»o)] Pir, t-co)dt\<— f P(r, t - ω) dt 
ττ j \ π J 

to0 — ô 

(OQ + Ô 

(OQ — Ô 

π J 
P(r, t - œ)dt = ε. 

As regards the integrals in the remaining intervals, in them 11 — ω \ > δ and there-
fore due to (55.3) it is possible to obtain 

P(r, t - ώ) < ε, 

provided r is taken sufficiently close to 1. Then the modulus of each of these integrals 
does not exceed 

^ Γ[ΐ/ωι + ι/(ο>ο)ΐ]Λ, 
71 J 

i.e. it can be made as small as desired. 
The theorem is proved. 

§ 56. Behaviour of a Poisson integral in the general case 

We proved in § 55 that if f(co) is continuous at ω = ω0, then the Poisson integral 
tends to f(co0) independently of the path by which M(r9 co) tends to the point Ρ(1,ω0) 
(provided it remains inside the circle of unit radius). 

In the case when f(co) is not continuous at ω = ω0, matters become more com-
plicated. However, here it is possible to obtain good results only if Af tends towards P 
not by any path but by non-tangential paths to the circle. This means that we permit 
the point M to move towards P provided it remains the whole time within some angle 
φ of magnitude 2φ < π with the bisector coinciding with OP (see Fig. 12). 

Before studying the behaviour of the Poisson integral in the general case, we will 
prove a theorem by Fatou, concerning the behaviour of the partial derivative of 
/ ( r , ω) with respect to ω. 
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THEOREM 1. Iff(œ) possesses a finite derivative at the point P(l , ω0), then 

3/0% ω) 
— χ - >f'(<o0)9 
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if the point M{r9 ω) -► P(l, ω0) by any non-tangential path. 
In order to prove this, we will first prove a lemma. 
LEMMA 1. Letf(u) have a bounded derivative fr (ω) in some interval (ω', ω") and let 

Γ{ω) be continuous at some point ω0 of this interval. Then 

df{r,a>) 
3ω ■f'(o>o), 

where M(r9 ω) -> P(l , ω0) along any path, provided it remains within a unit circle. 
We have from (55.1) 

df(r9œ) 1 Ç,,^dP(r9t-œ) ^ 
π J οω 

Since 

dm 

dP(r9 u) 
du 

— (1 — r2) 2r sinw 
[1 - 2rcosw + r2]2 

(56.1) 

(56.2) 

then dP(r9 u)/du is an odd function, negative or equal to zero in [0, π ] , whilst for 
any δ > 0 we have 

max 
o< |w |< j r 

ÔP(r9 u) 

du < 
2(1 - r2) 

[1 - 2rcos<5 + r2]2 0 as r ^ 1. (56.3) 

We choose ô so that (ω0 — δ9 ω0 + δ) lies within (ω', ω") and divide the integral 
(56.1) into two for the interval (ω0 — δ9 ω0 + δ) and for the remaining part of the 

FIG. 12 

circle. In the second integral for any ε > 0, provided M becomes sufficiently close 
to P , the modulus of the factor dP(r9t — ώ)/3ω becomes less than ε by virtue of 

n 

(56.3), which means that the whole integral will not exceed ε J \f(t) \ dt. As regards the 
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first integral, integrating by parts, we have 

π J J w dco π J J w dt 
(DQ — Ô 

\(DQ + Ô 

±-[f(t)P(r,t-co)] 
71 |û>0 — δ 

VUQ TU 

+ ~- j Γ(ήΡ(τ9ί-ω)< 

Here the integrated term tends to zero when M-> P , because the Poisson kernel 
tends to 0, and/ ( i ) is bounded as far as the integral is concerned, so that it is possible 
to consider it to be the Poisson integral of the function equal to / ' (t) in (ω0 — δ > 
ω0 + δ) and zero in the remaining part of the circle; this function, by hypothesis, is 
continuous at ω = ω0, and therefore on the basis of the preceding results, this inte-
gral tends to/'(co0), no matter how M tends to P. 

Thus our assertion concerning df(r, ω)/3ω is true and Lemma 1 is proved. 
We shall now prove Theorem 1. First, we refute the hypothesis tha t / ' (ω) is continuous 

at ω0 and confine ourselves to the fact that it exists and is finite; then we will consider 
movement along non-tangential paths. 

For simplicity of argument, we will suppose that ω0 = 0and / (0) = / ' ( 0 ) = 0(this 
does not decrease the generality, as it is possible to consider instead of f{p) the 
function fx (ω) = / ( ω ) — f(ö) — ω/'(0) and to study the behaviour of the Poisson 
integral for it). 

Thus, we should prove that if /(0) = / ' ( 0 ) = 0, then 

^ U o , (56.4) 

if M(r, ω) -> P ( l , 0) by any tangential path. 
First we note that because of our conditions we have lim (f(t)/t) = 0, and therefore 

for any ε > 0 it is possible to find δ > 0 such that i_>0 

fit) 
<ε at | i | <<5. (56.5) 

For the remainder it is convenient to take δ < π/2. 
Let Ψ(ί) = 0 in ( - d, δ), Ψ(ί) =f(t) in δ < |*| < π and Ψ(ί + 2π) = Ψ(ί). It 

is clear then that denoting its Poisson integral by W(r, ω), we have 

>*p!Ü. , ± f m»*· ·-<■»,,. (56.6) 
3ω π J dœ 

(5< | ί |<π 

On the other hand, since Ψ(ί) satisfies the conditions of Lemma 1 in (— <5, δ) and 
^ ( 0 ) = 0, then d W(r, oS)/dco-> 0, when M(r, ω) -> P ( l , 0) along anypath. Hence it 
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follows that the integral on the right-hand side of (56.6) tends to zero, and therefore 
it follows from (56.1) that (56.4) will be true, if we prove that the integral 

π J ~ | / ( 0 d^o dt 

-Ô 

can be made less than Ce where C is a constant. But by virtue of (56.5) we have 

π J I σω 

-Ô 

We now prove that the expression 

dP(r, t - ω) 
οω 

dt. 

(56.7) 

remains bounded in — δ < t < δ, when the point M(r9 ω) -* P ( l , 0) along any non-
tangential path. 

In order to prove this, we remark first that on the basis of (56.2) 

\n\ - 12 r s in ( ; - co ) ( l - r2)\ 2 |f| |sin(f - ω)| 
1 0 1 ' ' \ett - reia>\2 < | e « t - r e i « | 2 · 

Since 
\eit _ reia>\ = |βΙ(ί-ω) _ r | < |sin(i - ω)|, 

because the modulus of a complex quantity is not less than the modulus of its imagin-
ary part, then 

ι βκ 2 | " 

Moreover, we note that δ < π/2 and therefore \t\ < (π/2) |s ini | , whence 

Isinil 

We can confine ourselves to considering the case — π/2 <ω < π / 2 , because 
M(r, ω) -> P ( l , 0). Figure 13 holds for ω > 0 but the case ω < Ois treated in an exactly 
similar manner. 

Since we are concerned with non-tangential paths, there exists an angle KPK' 
with a vertex at P and the bisector OP such that the point M as it approaches P 
cannot go outside this angle. Letting a = KP/ where Pyf is a line, passing through 
P, parallel to the axis Oy, we see that the vector P M forms with the positive direction 
of the abscissa axis an angle φ, where φ > π/2 + a (if ω < 0, then we will have 
ψ < 3π/2 — a) whence it is clear that rei(° = 1 + ρ ei<p, where ρ is the length of the 
vector MP and π/2 + oc < 99 < 3π/2 — a, i.e. α < φ — π/2 < π — α. 

Thus 

ρβ = ρβ ζ e x ζ/ = ιρβ ν ζ / = ige , 
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where α < Ψ < π — a. Therefore 

eu - 1 
e" — re11 eix — 1 — iqev- -e-iW -Q 

l~2 ~l~2 

e z — e z 

2i 2e (4-) _ 

> 2 s i n y s i n i y - ï ' (56.9) 

(Here we again use the fact that the modulus of a complex quantity is not less than 
the modulus of its imaginary part·) 

Now from (56.8) and (56.9) we conclude 

161 <^ 
| sin 11 

sin- sm( y - Ψ 
< π 

sin 
I 

-Ψ 

If | ; | < a, then |sin(*/2 - Ψ)\ > sin (a/2) and then 

π 
i ß i < — . 

sin — 

i.e. Q is bounded. If ö > \t\ > a, then for M(r, ω) -> P ( l , 0) the denominator in 
(56.8) is bounded below, which means that \Q\ is again bounded. This concludes the 
proof of Theorem 1. 

\y 

Using the proved Theorem 1, we can now obtain a result referring to the behaviour 
of the Poisson integral for any summable function/(x). We will prove the following 
theorem, also due to Fatou: 
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THEOREM 2. At any point ωθ9 where f(œ) is the derivative of its indefinite integral, 
the Poisson integral f((o, r) - * / ( ω 0 ) , if the point M(r, ώ) tends to the point P ( l , ω0) 
along any non-tangential path. 

In particular it follows that the Fourier series of any summable function is summable 
by Poissorfs method to this function almost everywhere.^ 

In order to prove this we will suppose that 

F(co)= I At) dt. 
—π 

We have, integrating by parts, 

/ ( r ,û ) ) = - [ F ( i ) P ( r , i - o ) ) ] 
71 

1 f 
-n π J 

F(t)j;[P(r9t-a>)]dt. 

The integrated term tends to zero when M -> P ( l , co0) provided ω Φ — π and 
ω Φ π. As regards the integral, it is possible to rewrite it in the form 

r 

π J 
F(t) P(r, t - ω) dt = j^F(r, ω), (56.10) 

and therefore, only on the basis of the result just obtained, if M(r, ω) -> P ( l , ω0) 
along a non-tangential path, the expression (56.10) tends to Ff(œ0) everywhere, where 
F'(x) exists and is finite. Consequently, at any point where/(ω0) = F'(co0) we have 
/ ( r , ω) ->/(ω0) and this is what was required to be proved. 

Since from the theory of the Lebesgue integral it is known that the equality F'(œ} 
= / ( ω ) holds almost everywhere, then it follows in particular that for almost all 
values of ω 

/ ( r ,û )0 - / (o>) , 

where M(r, ω') -> P ( l , ω) along any non-tangential path. This occurs even more so, 
when M(r, ω) -> P ( l , ω ) as r - ^ 1 , whence it is evident that the theorem of § 53 
is a corollary of Fatou's theorem. 

We will now look at the role played by the Poisson integral in solving the celebrated 
Dirichlet problem. 

§ 57. The Dirichlet problem 

This problem was set by Dirichlet in the following form: Given a closed contour 
and a function f(x), continuous on it, it is required to find a harmonictf function 
inside this contour tending to given values on the contour when the point tends by 
any method from inside to the periphery. 

t Moreover, it is summable almost everywhere to/(jc) by method A* (see the definition of A* in 
§ 7 of the Introductory Material). 

t t That is, it satisfies Laplace's equation 

d2F d2F 
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We will discuss the particular case when the contour under consideration is a 
circle of unit radius with centre at the origin. If we denote by x and y the Cartesian 
co-ordinates of the point M(r, ώ) then we have 

a0 °° 
F(x, y) = f(r, ώ) = — + £ (an cosnœ + bn smnco)rn, 

where aw and bn are the Fourier coefficients ïoxf(x) and therefore F(x, y) is the real 
part of the analytic function inside the circle of unit radius, defined by the power series 

But it is known that the real (and imaginary) part of any analytic function is a har-
monic function, that is, it follows from the theorem of § 55 that the function F(x, y) 
gives the solution of the Dirichlet problem for a circle. 

If the Dirichlet problem is extended by not requiring the values of the function 
given on the boundary to define a continuous function, but permitting the point to 
tend from inside to the periphery only along non-tangential paths, then F(x, y) tends 
to f(œ) almost everywhere and thus gives the solution of the generalized Dirichlet 
problem. 

§ 58. Summation by Poisson's method of a differentiated Fourier series 

Let 

o(F) = - y - + £ (A0 cosnx + Bn smnx). (58.1) 

We know that the series 
Ση(Βη cosnx — An sinnx), (58.2) 

obtained by differentiating (58.1) should not be a Fourier series, since its coefficients 

a„ = nBn and bn = —nAn 

should not even tend to zero. Therefore, the preceding theorems cannot be applied 
to series (58.2). But instead we have the following: 

FATOU'S THEOREM. If at some point x the function F(x) has a symmetrical derivative 
equal to the value /, then by differentiating the series o(F), we obtain a series which is 
summable at the point x to the value I by Poisson's method. 

Since lim [F(x + h) — F{x — h)]/2h, if this limit exists, is the symmetrical deriv-
Ä->0 

ative, then by the condition of the theorem 

hm — = /. (58.3) 

Supposing, as always 
An °° 

F(r, x) = -T- + X (A„ cosnx + Bn sinnx)rn, 
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we can write dF(r x) °° 
— r - ^ — = V (Bn cosnx — An $mnx)rn. 

ox n=i 
(58.4) 

Here term-by-term differentiation is valid, since at r < 1 series (58.4) converges 
uniformly relative to x. It is necessary for us to prove that 

dF(r, x) 
dx 

-> / as r -> 1. 

But 

dF(r, x) 1 
ox π J ox π J ot x π J F(t)- dt, (58.5) 

and since dP{r, u)/du is an odd function (see (56.2)), then 

dF(r,x) 1 ? „ , . . . ,dP(r,u) 
dx 

= - - F(x + u)—^-
π J du 

—n 

du. 

By virtue of (56.3) for any ε > 0 and δ > 0 it is possible to choose r0 < 1 such that 
\dP(r, u)/du\ < ε for δ < */ < π and r0 < r < 1. Therefore 

dF(r, x) 
^ - - 1 / 1 ^ . 9 - ^ - . » ^ * + /,. 

where 

ΙΛΙ < 
2« 

JV(0I rfi < Cs, 

(58.6) 

(58.7) 

where C is a constant. From (58.3) it is possible to suppose that the number δ is so 
small that , „ , N . 

F(x + u) - F(x - u) 
l\ < e. 2u 

Then from (58.6), (58.7) and (58.8) 
δ 

dF(r, x) l Γ F(x + u) - F(x - u) dP(r, u) 

(58.8) 

dx ±1- 2u 
-2u du 

du + ZjL 

-'-m 1 Γ [ F(x + u) - F(x - u) 

lu 
-I 

dP(r, u) j 
2 « — ~ ακ 

3M 

/ r dP(r,u) 
π J OM 

(58.9) 
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Due to (58.8) we have δ 

2ε Γ I 3P(r, u) 
\I2\ < — \u—~ 

π J \ du 
o 

du < CxS, 

where C1 is a constant. Indeed, from (56.2) we see that 

3P(r, Ü) 

du 
< 

2M sinw 
< π, for 0 < u < 

2 ' 

For 73, integrating by parts, we find that 

(58.10) 

2/ Γ dP(r,u) 21 21 C 
= u \L-Ldu = àP(r9ô) + — P(r,u)du-*l. (58.11) 

π J ou π π J 

because P(r, δ) -* 0 and from formula (55.4). 
Now from (58.7), (58.10) and (58.11) we obtain 

dF(r, x) 
dx 

I as r -> 1, 
and the theorem is proved. 

Note. Since the presence of the normal derivative at some point guarantees the 
existence of a symmetrical derivative at that point and their equality, then from this 
it follows in particular that: 

If at some point x the derivative F'(x) exists and is finite, then dF(r, x)/dx -> F'(x) 
asr -> 1, /. e. when F(x) has a finite derivative, the differentiated Fourier series is summable 
îo this derivative by Poisson's method. 

In § 56 we have essentially already obtained this result (only it is formulated in 
different terms). Now we will see that the requirement of the existence of F'{x) can 
be replaced by the weaker requirement of the existence of a symmetrical derivative. 
But whereas in the theorem of this section M(r, x0) -> P ( l , x0) along the radial path, 
in § 56 it was proved that M(r, x) -> P{\, x0) along any non-tangential path. 

§ 59 f. Poisson-Stieltjes integral 

The Poisson-Stieltjes integral is the name given to the expression 

u(rei(°) = - [P{r, t - ω)άΨ(ί), 
π J 

where Ψ(ί) is some function of bounded variation in [ — π, π]. Integrating by parts, 
we obtain 

u(reito) = —P(r,t - ω)Ψ(ή 
71 

71 

1 Γ d 
— nO-^P(r,t-co)dt. 

t This section can be omitted at a first reading. 
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If co Φ ± π , then the integrated term as r -> 1 tends to zero. As regards the integral, 
from Theorem 1, § 56 it should tend to Ψ'(ω0) at any point ω0, where ^"(ω) exists 
and is finite, only if the point M(reia>) tends to the point P(eia>o) along any non-
tangential path. 

In particular „ ( r ^ ) - > y » as r - 1 , 

if Ψ'(ω) exists and is finite. 
Hence as a corollary we obtain: the Fourier-Stieltjes series is summable by the 

Abel-Poisson method almost everywhere. 
Later we will find it useful to prove that if ω Φ ± π and Ψ' (ω) = + oo, then we have 

u(reia>) -» 4- oo as r - > l . 

In order to prove this, from what has been said concerning the integrated term, it is 
sufficient to prove that 

π 

1 f d 
I = Ψ(ή - r - P(r, t - ω) dt -> + oo as r -> 1. 

71 J Ot 
— 71 

It is just the same kind of integral as (58.5), therefore we see immediately that for 
any ε > 0 

/ = - - f [Ψ(ω + u) - Ψ(ω - κ)] 9Ρ^ U) du + IX=I1+ I2, 
71 J OU 

0 

where |7Ί | < ε, if δ is fixed and r is taken sufficiently close to 1. Now we represent 
I2 in the form 

i2 = _ I f [ Ϊ > + „) _ ^(ω)] 9P(r? M) <fa 
π J dw 

o 
<5 

- - f [ ¥ » - ^(eo - u)] dP{:' U) du = I3+h. (59.1) 
71 J OU 

0 

We will show that I3 -► + oo and 74 -* + oo. The proof for both integrals is 
completely identical. We will carry it through for 73. 

Since Ψ'(χ) = + oo, we can, if A is given, suppose that à is so small that 

Ψ(ω + u)-Ψ(ω)> Au for 0 < w < < 5 . 
We have 

1 Γ Ψ(ω + ιι) - 5Ρ(ιι) Γ dP(r, w) 1 
73 = u — ^ du, 

π J u l ou j 

o 
but - u dP(r, u)/du > 0 (see (56.2)), therefore 
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and we have seen (see (58.11)) that 

i\[-
dP{r, u) 

du 
du-* I as r-> + 1, 

whence it follows that as r -► 1 it is possible to make I3 > A/2 where A is previously 
given and the proof is concluded. 

Note. That the Fourier-Stieltjes series or the series obtained after differentiation 
of the Fourier series for a function of bounded variation (see § 23) cannot be a Fourier 
series is evident from this simple example : the series 

^ sinnx 

n=\ n 

as we know (see § 41) is the Fourier series of a function monotonie in [0, 2π\; how-
ever after its differentiation we obtain the series 

00 

]►] cosnx, 
«=i 

which is not a Fourier series because its coefficients do not tend to zero. 

§ 60. Fejér and Poisson sums for different classes of functions 

We will now prove a number of theorems which will show that it is possible to 
judge the properties of a function by studying the sequence of its Fejér or Poisson 
sums. 

THEOREM 1. In order for the trigonometric series to be a Fourier series for a continuous 
function, it is necessary and sufficient for the sequence of its Fejér sums {on(x)} to con-
verge uniformly. 

The necessity of the condition is given simply by Fejér's theorem (see § 47). To 
prove its sufficiency, we note that if the given trigonometric series is 

*o — + ]T (an cosnx + bn sinnx), 

then 
« = i 

n / k \ 
*»(*) = Σ I 1 - r fecostx + bksinkx), (60.1) 

fc=o \ n + i / 
and therefore for k < n 

( k \ If 
II r ) ß f c ~ ~~ ön(f)soskt dt, 

— π 

π 

11 I bk = — ση(ί) sinkt dt. 
\ n + 1 / π J 

(60.2) 
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If the sequence on{x) converges uniformly, then supposing/(*) = \\mon{x), we 
« - » 0 0 

see tha t / (x) is continuous. As n -» oo from equations (60.2) by passing to the limit 
we obtain 

ak = — f(t)cosktdt (k = 0, 1,...), 
π J 

b*=4J f(t) sinkt dt (k = 1,2,...), 

and this is what was required to be proved. 
THEOREM 2. For the trigonometric series to be a Fourier series for a bounded function, 

it is necessary and sufficient for a constant K to be found for which 

| σ Β (χ ) |<Α: (n = 1,2,...; 0 < x <2π). 

The necessity of this condition was proved in § 48. To prove its sufficiency we note 
that if it is satisfied, then 

π 

— \a\{x)dx <2K2. 
71 J 

— 71 

But due to Parseval's equality we obtain from (60.1) 

π 

Ï / ^ - W - T + A O - ^ T ) ' « * » · π 
— π 

From this it follows that if m is any integer, m < «, then 

a2 m / l· \ 2 

Letting n -> oo and keeping m constant, we conclude from this that 

/z2 m 

-ψ + Σ & + iï) < ix? 
* k = l 

and since m is any number, the series Σ(α% + bl) < + oo. 
This means that the trigonometric series under consideration is a Fourier series of 

some function/(x) G ZA But since on{x) -+f(x) almost everywhere, then from 
Ισ«(χ)Ι < K it follows that \f{x)\ < Xand the theorem is proved. 

THEOREM 3. For the trigonometric series to be a Fourier series for f(x)eLp(p > 1), 
it is necessary and sufficient that 

\\on(x)\\Lp<K ( * = 1,2,...), (60.3) 
where K is a constant. 



166 BASIC THEORY OF TRIGONOMETRIC SERIES 

To prove the necessity we note that 

on(x) = ~Jf(t)K„(t-x)dt. 

Therefore, noting that (l/π) J K„(u)du = land that K„(u) > 0 and applying the lemma 
— n 

proved in § 9 of the Introductory Material, we immediately find 

\Wn(x)\\LP<\\f(x)\\LP (60.4) 

and since the right-hand side of (60.4) does not vary with n, the proof is concluded. 
To prove the sufficiency we will consider the functions 

X 

Fn(x)= \on(t)dt (60.5) 
o 

and prove that they are uniformly absolutely continuous, i.e. for any ε there exists δ 
such that for any system of non-overlapping intervals (ai9 Z>f) with a sum £ (^ — α^ 
< δ we have 

Y\Fn(bd-FM)\<t· (60.6) 

Indeed, denoting by S this system of intervals, because of (60.3), we have 

bi 

Σ\?η(Κ) - Fn{ad\ <Σ ί M)\dt 
ai 

= J MOI dt < Π \on(t)\
pdtVlp(j \«dt\X,q < àVq\\on\\Lp < ôllqK < ε, 

if δ is sufficiently small. 
Arguing this, we see that the complete variations of these functions are all bounded. 

Therefore, from Helly's theorem (see Introductory Material, § 17) it is possible to 
extract from them the sub-sequence Fn.(x) which converges at every point to some 
function F(x); according to Helly's theorem it should be of bounded variation, but 
from the uniform absolute continuity of the function Fn (x) it immediately follows that 
it is absolutely continuous. 

In fact, if in formula (60.6) instead ofn we write n} and pass to the limit a s j -► oo, 
then we obtain 

Σ \F{bi) - F(at)\ <ε. 

Let us prove now that the series under consideration is a(f) where f(x) = F'{x). 
Indeed, we have 

2JT 

j o„(t) coskt dt — Fn{t) coskt 
o 
and 

2π 2η 2π 

+ k \ Fn(t) sinkt dt = Fn{2n) + k j Fn(t) sinkt dt 
o 

2π 

j an{t) sinkt dt = — k j Fn(t) coskt dt. 
0 0 
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Letting n -» oo for the sequence nj9 for which Fn.(x) -► F(x), we obtain from form-
ula (60.2) 2π 2η 

1 k C k C 
ak = — F(2n) + — F(t) sinkt dt, bk = F(t)cosktdt 

0 0 

(passage to the limit under the integral sign is valid here due to Lebesgue's theorem 
(see Introductory Material, § 14)). 

After integration by parts of the last two integrals we conclude from this that 

2π In 

ak = — f(t)coskt dt, bk = — \ f(t) sinkt dt, 
π J π J 

o o 

and this is what was required to be proved. 
It remains to prove that /(x) e ΖΛ But for this it is sufficient to note that o„(x) -+f(x) 

almost everywhere, then, using the inequality (60.3) and Fatou's lemma (see Intro-
ductory Material, § 14), we immediately obtain \\f(x) \\LP < K. 

COROLLARY. Iff(x)eLp,p > 1, then 

In 

j \f(x) ~ <*n(x) \vdx -> 0 as n -» oo. (60.7) 
o 

We already know (see (60.4)) that iff(x)eLp, then 

Ι Ι ^ ( χ ) | | ^ < | | / ( χ ) | | ^ . 

Let ε > 0 be given. It is possible to find (see § 28) a trigonometric polynomial 
T(x) such that 

| | / ( * ) - r ( * ) k , < e . (60.8) 
Consequently, for any n 

\\0n{xJ-T)\\LP<8, 
i.e. 

\\°n(x,f)-°n(x,T)\\LP<8. (60.9) 

But since T(x) is a trigonometric polynomial, then the continuous function ση(χ, Τ) 
tends to T(x) uniformly, and even more so 

\\σΛ(χ,Τ)-Τ(χ)\\„<6 (60.10) 

provided n becomes sufficiently large. Therefore, from (60.8), (60.9) and (60.10) we 
have 

II fix) - on(x,f)\\LP < \\f(x) - 7X*)IILP + II T(x) - an(x, T)\\LP 

+ \\on(x,T)-Gn(x,f)\\LP < 3 ε , 

if n is sufficiently large and thus (60.7) is proved. 
Below, in the proof of Theorem 4, we shall see that this assertion holds too for 

p = 1, i.e. iîf(x)eL, then 

In 

\ I / (x) -" °n(x) I dx -* 0 as n -> oo. 
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However, Theorem 3 holds only for p > 1. In fact, if p = 1, i.e. if 

2π 

j \ση(χ)\ dx < K, 
o 

then we cannot assert that the series under consideration is a Fourier series (see the 
note to Theorem 5 below). The case of a Fourier series is considered in the following 
theorem: 

THEOREM 4. In order for a trigonometric series to be a Fourier series, it is necessary 
and sufficient that 

In 

j \°m(x) "" °n(x)\ dx -> 0 as m -► oo and n -* oo. 
o 

We know (see § 47) that 
n 

°η(χ) -fid = - [[fix + 0 -fix)]Kn(t)dt. 
π J 

—jt 

Therefore, supposing that 

ηθ= j\fix + 0-fix)\dx, 
—n 

we have 
n π / n \ 

j\o.(x) - / W l dx < j \^f\f(x + 0 - / ( * ) l Kn(t)dt\dx 
— π —π \ —re ' 

π 

= - [wit)Kn{t)dt. (60.11) 
7C J 

— n 

If we denote by o„ix) the Fejér sum for σ(Ψ), then 

π 

σ*(χ) = - (w(t + x)K„(t)dt, 
71 J 

— 71 

and therefore, from (60.11) 
n 

/ | σ „ ( χ ) - / ( χ ) | ( / χ < σ * ( 0 ) . 
— n 

But since Wit) is continuous and ^ (0 ) = 0, then σ*(0) -> 0 as n -> oo, which means 
that 

j\an(x)-f(x)\dx-+0. (60.12) 
— n 

From this we obtain 
n n n 

\ \°nix) - °mix)\ dx < j \σα(χ) -fix)\ dx + j \f(x) - om(x)\ dx^O 
—n —n —π 

and the necessity of our condition is proved. 
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To prove its sufficiency we note that from 
In 

\ \ση(χ) — om(x)\dx-> 0 as ra->oo,«->oo 
o 

the existence of the constant K, for which 
In 

j\an(x)\dx<K (n = 1,2,...). 
o 

follows. Supposing, as in Theorem 3, 
X 

Fn(x)= jon(t)dt. 
0 

then we will prove in the same way that the sequence of functions Fn(x) is uniformly 
absolutely continuous. Here, using the notation of Theorem 3, we have 

Σ \Fm(bd - Fm(fld\ < S M O I dt. (60.13) 
s 

But 
J MOI dt < j MO - ak(t)\ dt + J MOI dt 
s s s 

In 

< / M i ) - ak(f)\ dt + j M O I dt. (60.14) 
0 S 

Let ε > 0 be given. Due to the condition of the theorem it is possible to take k so 
large that 

In 

\ 
M O " σ*(0Ι dt < y for n > k. (60.15) 

We will now fix k; then, taking δ sufficiently small, it can be proved that 
j K(0 l dt < ε/2 2Ltp<k provided mS < δ. But if this is so, then from (60.14) 

a n d( 6 0- 1 5> / Μ 0 Ι Λ < β 
s 

and consequently from (60.13) 

X \Fn(bd - Fn(ad\ <s at £ (6, - α,) < Ô. 

Now as in Theorem 3 we see that it is possible to remove from the sequence 
{F„ (x)} a, sub-sequence converging to some F(x) which should be absolutely continuous 
and moreover, the series under consideration is a Fourier series of F'(x). 

The theorem is proved. 
Note. In the process of this proof we have established that for any/(x)e L we have 

In 

j I /(*) — an(x) \dx->0 as n -* oo. (60.16) 
o 

Finally, we shall prove yet another theorem. 
7 Baryl 
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THEOREM 5. In order for the trigonometric series to be a Fourier-Stieltjes^ series, it 
is necessary and sufficient that 

π 

\\on(x)\dx<K («.= 1,2,...), 
— π 

where K is a constant. 
The necessity of the condition follows from the fact that for a Fourier-Stieltjes 

series we have 
π 

on(x) = - ί Kn(t - x) dF(t) (60.17) 
π J 

(this formula is derived in just the same way as (47.2)). Therefore 

jt 

| σ „ ( χ ) | < ^ \Kn(t-x)\dF\, 
71 J 

— π 

where \dF\ is no different from dV(t), if V{t) is taken to be the complete variation 
of F{x) in 0 < x < t. Hence, by changing the order of integration, we obtain 

2π 2π / 2π 

j\an(x)\ dx < J i - jK„(t - x) \dF(t)\ dx 
0 0 I 0 / 

2π 2π 2π 

= j\dF(t)\^ jKn(t-x)dx= j\dF\ = V, 
0 0 0 

where F i s the complete variation of F(x) in [0, 2π\. 
Thus, the necessity is proved. 
In order to prove the sufficiency, we will again turn to considering the function 

Fn(x) already considered in Theorems 3 and 4. It is true that we have not been able 
to prove that they are uniformly absolutely continuous but nevertheless they are of 
uniformly bounded variation, because 

Zl^-fo+i) - F*(xt)\ < Σ / W O I * = j\on(0\dt<K 
Xi 0 

for any division of the interval [0, 2π] by the points xt. Therefore, from Helly's 
first theorem (see Introductory Material, § 17) a subsequence nj exists such that 
Fn.(x) -* F(x) for any x of [0, 2π], where F(x) is of bounded variation. It remains 
to prove that the given series is the Fourier-Stieltjes series of dF. 

t See § 23, point (9). 
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For this, as in the proof of Theorem 3, we have 

2π In 

I k \ I f Fn(2n) k f 
1 r )ak = — on(t)cosktdt = + — Fn(t) sinkt dt 

\ n + I / n J n n J 
o o 

and then by integrating by parts we obtain 

In 

0 Permitting n to tend to infinity for the sub-sequence nj9 we find 

In 

ak = — I coskt dF(t) 

o 

and similarly for bk (passage to the limit is valid from Helly's second theorem, 
Introductory Material, § 17). 

The theorem is proved. 
Note. We know (see § 59) that not every Fourier-Stieltjes series is a Fourier series. 

Thus, the condition 
π 

\\a„{x)\dx<K (B = 1,2,...) 
— π 

is not sufficient for the series to be a Fourier series and this shows that at p = 1 
Theorem 3 no longer holds. 

Taking into account that the Fourier-Stieltjes series is the result of differentiating 
the Fourier series for a function of bounded variation, we obtain as a corollary of 
Theorem 5 the following theorem: 

THEOREM 6. For the trigonometric series to be the Fourier series of a function of 
bounded variation, it is necessary and sufficient that 

In 

I 
o 

\\o'n(x)\dx <K (n= 1,2, . . .) . 

All the theorems that have been proved have referred to Fejér sums. If instead of 
them we consider Poisson sums, i.e. 

a °° 
f(r, x) = -£- + £ (an cosnx + bn sinnx)rn 

1 « - 1 
and note that 

r>*-\[ / ( r , x ) - - \f(ß)P(r,t-x)dt, 
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where P{r, u) is a Poisson kernel, then it is possible to prove completely analogous 
theorems; indeed, in this proof we used the whole time the expression ση(χ) in the 
form 

n 

*■(*)= - \f(t)KH(t-x)dt 
π J 

— 71 

and we based the proof only on the facts that Kn{u) > 0 and 

u) du = 1. 

But we also have P(r, u) > 0 and 
π 

— P(r, u)du=\. 
71 J 

— n 

Therefore the whole argument can be carried out word for word (the fact that r -> 1 
for all values of r, not just for a sequence, does not play a part, since it would be 
possible to consider the sequence rk -> 1 as k -► oo and to use the kernels P(rk, ü) in 
the discussion). 

Thus the following theorems are obtained. 
THEOREM 1'. In order for a trigonometric series to be a Fourier series of a continuous 

function, it is necessary and sufficient for its Poisson sumsf(r, x) to tend uniformly to a 
limit as r -> 1. 

THEOREM 2'. In order for a trigonometric series to be a Fourier series of a continuous 
function, it is necessary and sufficient that a constant K exists, for which 

THEOREM 3'. In order for a trigonometric series to be a Fourier series for f(x)eLp 

(p > I), it is necessary and sufficient for 

\\f(r,x)\\LP<K, 0 < r < 1. 

Moreover, iff(x)eLp(p > 1), then 

\\f(r,x)\\LP<\\f(x)\\LP. (60.18) 
We also have 

j\f(x) -f(r,x)\pdx-+0 as r-+l, (60.19) 
o 

whilst this is true both for p > 1 and for p = 1. 
THEOREM 4'. In order for the trigonometric series to be a Fourier series, it is necessary 

and sufficient that 
In 

j | f{r, x) — / ( ρ , x) | dx -> 0 as r -> 1 and ρ -+ 1. 
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For the case of a Fourier-Stieltjes series the argument is somewhat more compli-
cated. We will not go through it, but will confine ourselves to formulating the theorem 
analogous to Theorem 5, namely: 

THEOREM 5'. For the trigonometric series to be a Fourier-Stieltjes series, it is necessary 
and sufficient that 

In 

j\f(r,x)\dx <K, 0 < r < 1. 
o 

We note that in Chapter VIII (§ 14 and § 20) instead of Fejér or Poisson sums of a 
Fourier series we shall study its partial sums Sn(x) and for them we shall consider the 
question of the behaviour of HSJIjy» and | | / — Sn\\LP zip > 1. 

§ 61. General trigonometric series. The Lusin-Denjoy theorem 

Up until now we have studied Fourier series. Now we will consider trigonometric 
series of the same general type and prove a number of very simple but important 
theorems concerning them. We will begin by considering the question of when the 
trigonometric series converges absolutely in a set of positive measure. Here we have a 
theorem proved simultaneously and independently by Lusin[3] and Denjoy[2]. 

THE LUSIN-DENJOY THEOREM. If the trigonometric series 

a °° 
~w~ + Y,(ancosnx + bnsinnx) (61.1) 

converges absolutely in the set E, mE > 0, then 

Σ(Ι^Ι + Ι*.Ι)< + °°. 

Let us define ρη = v ^ + b\, (n = 1, 2,...) and let 

a2 a0 = 0, — = ρ0, an = Qn cosan, bn = ρ„ sinan (n = 1, 2 , . . . ) . 

Then the series (61.1) takes the form 

oo 

J]Qncos(nx - α„). (61.2) 
«=o 

Absolute convergence of the series (61.2) in E means that 

00 

Σ&» |cos(«x - ocn)\ < + oo for xeE. (61.3) 

According to Yegorov's theorem, it is possible to find a perfect set P cz E, mP > 0, 
in which the series (61.3) converges uniformly. Let S(x) be its sum in P, then from the 
uniform convergence of (61.3) 

J S(x) dx = £ ρη J |cos(«x - an)\ dx. 
P n=0 P 
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But 

j \cos(nx — ocn)\ dx > J cos2(nx — ocn) dx 
p p 

1 f 1 I f 
= — [1 + cos2(«x — <xn)] dx = —mP + y cos2(wx — oc^dx. 

p P 

Iff(x) denotes a function equal to 1 in P and zero outside it, then 

π 

j cos2(«x — ocn) dx = jf(x) cos2(/zx — ocn) dx 
P -n 

n n 

= cos2a„ \f{x) coslnx dx + sin2an \f{x) sinlnx dx, (61.4) 
— π — n 

and therefore 

j cos2(nx — GC„) dx-+0 as n-+co, 
p 

since the integrals on the right-hand side of (61.4) differ only by a bounded multiplier 
from the Fourier coefficients off(x). 

From this it follows that 

Γ l 

|cos(«x — ocn)\ dx > -~rfnP 

where n is sufficiently large, which means that the convergence of series (61.3) implies 
the convergence of the series £ρΠ, whence it follows that 

Σ | α „ | < +00, Σ |Α β | < +00. 
The theorem is proved. 

§ 62. The Cantor-Lebesgue theorem 

We will now consider the coefficients of a trigonometric series, if it converges not 
absolutely but simply in a set of measure greater than zero. 

Here we have 
THE CANTOR-LEBESGUE THEOREM. If a trigonometric series converges in a set E, 

mE > 0, then its coefficients tend to zero. 
In fact, if 

^Qncos(nx - ccn) (62.1) 

converges in E, mE > 0, then we have 

lim ρη cos(nx — an) = 0 for xe E. 

Λ - > 0 0 

If a sequence n1, n2, ..., nk, ... is found, such that 

Qnk > à > 0, (62.2) 
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then we evidently have ,. , . Λ „ 
limcos(Hfc;t — anj — 0, ^ e £ . 
fc-»oo 

We will prove that this is not possible. Indeed, then we would have 

lim cos2(«fcx — ocni) = 0, xe E. 
k-tao 

According to Lebesgue's theorem on the validity of passage to the limit under the 
integral sign for all-bounded functions, we have, integrating for the set E 

lim J cos2(nkx — ani) — 0. 
A» oo E 

But since by a similar argument to that in § 61, we have 

f 1 
lim cos2(nkx — ocnf) dx = — mE, 
k-+<x> J 2 

E 

and mE > 0, then we arrive at a contradiction. 
Consequently, it would be impossible to assume (62.2), therefore 

lim£„ = 0, (62.3) 
/!-»0 

and the theorem is proved. 
Note. The name of this theorem is explained by the fact that Cantor proved it for 

the case when the series converges in some interval [a, b] and Lebesgue generalized 
it for the case of any set of positive measure. We think it appropriate here to prove 
Cantor's theorem separately, as it does not require a knowledge of Lebesgue's integral. 

Thus, let the series (62.1) converge in some interval [a9b]. For convenience we will 
rewrite it in the form 

YQncosn(x - a„). (62.4) 

It is required to prove that qn -> 0. We will show that this is untrue ; then δ > 0 can be 
found such that 

Qn > ô (62.5) 
for an infinite set of values of n. 

We shall denote the length of the interval [a, b] by d. When x runs through [a,b], 
then x — <xn runs through an interval of length d. Taking n, such that n1d > 2π, we 
see that cosnx(x — ocni) can run through all its values, while x runs through [a,b], 
which means that it is possible to find an interval [α^, b±] within [a, b] such that this 
cosine > \. If n is chosen so that (62.5) is satisfied, then 

à 
Q^cosn^x - ccnJ > —, ai <x <bi. 

Let dx = b1 — ax. Arguing in the same way as before, we can choose n2 so that 
(62.5) is satisfied for it and so that n2d1 > 2π9 then in the interval [αχ, è j an interval 
[a2, b2] is found for which cosn2(x — a„2) > \ and therefore 

δ 
ρη2 cosn2(x - ccn) > —, a2 <x <b2. 
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This process can continue indefinitely, since the numbers n satisfying the inequality 
(62.5) belong to an infinite set. We obtain a sequence of intervals [ak, bk], enclosed 
within one another, whilst 

7 Q„k cosnk(x - a„k) > — . (62.6) 

There exists a point I , which belongs to all these intervals simultaneously. At this 
point ξ the inequality (62.6) is fulfilled for all k(k = 1, 2 , . . . ) and therefore 

UmQncosn(x — ocn) Φ 0, 
71-»00 

which means that the series ]Γ ρη cosn(x — ocn) should diverge at the point £. However, 
ξ lies in the interval [a, b] where the series converges and we arrive at a contradiction. 

§ 63. An example of an everywhere divergent series with coefficients tending to zero 

The question arises whether a trigonometric series with coefficients tending to zero 
converges in a set of positive measure. This problem was set by Fatou111 and the 
first answer to it was given by Lusin[1], who gave the example of a trigonometric 
series with coefficients tending to zero and divergence almost everywhere (more detail 
will be given in §§ 1 and 2, Chapter VII). Then Steinhaus111 gave the example of a 
trigonometric series with coefficients tending to zero and divergent at every point. 

Here we will describe an example of Steinhaus given in a later report151. 
Consider the series 

* cosk(x — In In/:) Ά \k ■ <
63
·» 

Let lk = [In A:], vk = In In A: and 

_ »+'- coskjx - vk) _ _ »+'» _ 1 _ 
* = »+! l n ^ *=«+! m * 

First we note that 

sin2/V (x - Vk\ 
n+ln 1 n+ln °1A1 ^ \ 9 / 

& - & ( * ) = Σ j-r[l - cosk(x - vk)] = 2 Σ 
k=ï+i lnfe k=n+\ Ink 

whence 

0 < gn - gn(x) < -yr— "if **(* - V*)2> 
/ i n « k=n+l 

since |sinw| < \u\. Let vn < x < vn+1 (n > 3); then for n + 1 < k < n + /„ we 
have, because of the monotonie increase in the numbers vk: 

vn<vk< vn+ln, 
and therefore 



CONVERGENCE OF CLASS OF TRIGONOMETRIC SERIES 177 

Applying the mean value theorem to the difference vn+ln - vn = In In (« + /„) 
- In In«, we find that . 

I x — vk I < —r— < — 5 1 *' «In« n 
and therefore for vn < x < vn+1 

'· - *»<*> < 2^«" + & < Ί (! + $ ■ ( 6 3 · 2 ) 

The right-hand side of the inequality (63.2) tends to \ as n -► oo; therefore, for 
any ε we can find N such that 

0 < gn - g»(x) < y + ε f o r Λ > ΛΓ. (63.3) 

On the other hand 

g->ln(n + ln)^
1 aS " ^ 0 0 ' 

therefore 
gn > 1 - ε for 72 > JV, (63.4) 

if N is sufficiently great. If e < % is taken, then from (63.3) and (63.4) 

gn(x) > —— 2ε > -- for vn < x < t;w+1 and n > N. (63.5) 

Now let x be any point of the interval [0,2π\. Let us prove that there exists an 
infinite set of those values of« for which gn(x) > £. In fact, if we mark off the points 
i?3, t;4,..., v„, on the abscissa axis, then they tend monotonically to infinity, which 
means that the intervals [vn, vn+1] (n > 3) cover the whole of the abscissa axis. 

Therefore, every point of the type x + p. 2π certainly lies within some interval of 
the type [vn9 vn+1]; but gn(x + p. 2π) = gn(x) and therefore at the point x the 
inequality (63.5) is satisfied, if« > N. 

But for sufficiently large p the inequality x + p. 2π < vn+1 requires « to be suf-
ficiently large, therefore, for an infinite set of values of « > N we will indeed have 
gn(x) > i · This means that in the series (63.1) under consideration there is an in-
finite set of "segments" in which the sum of the terms has a value exceeding J and 
therefore the series diverges. Since this has been proved for any x in [0, 2π], then the 
series diverges at every point. 

§ 64. A study of the convergence of one class of trigonometric series 

Fatou111 proved a whole series of important theorems referring to series for which 

an = o{^j and bn = o {^j . (64.1) 

But it appears that many of these theorems hold if a weaker requirement is satisfied, 
namely „ 

τ(»)=Σ*(Ι«*Ι +1**1)-*(»)· (64.2) 

7a Bary I 



178 BASIC THEORY OF TRIGONOMETRIC SERIES 

It is clear that (64.2) follows from (64.1) but the converse, generally speaking, does 
not hold. 

Trigonometric series, the coefficients of which satisfy condition (64.2), possess a 
whole series of interesting properties. They cannot be Fourier series (see Chapter VI, 
§ 3), but this theorem holds : 

THEOREM I. If the series 

a0 ™ 
~^r + Σ (an cos«* + bn ûnnx) 

with coefficients satisfying (64.2) is a Fourier series, then it converges almost everywhere; 
if it is o(f), where f{x) is continuous, then this series converges uniformly. 

In fact, it is known that if for a trigonometric series Sn(x) are the partial sums and 
on(x) are the Fejér sums, then 

i n I 
y k(akcoskx + bksmkx)\ \Sn(x) - ση(χ)\ = 

< 
1 

n + 
T Σ*(Ι«*Ι + IM = *(i) (64.3) 
1 k=l 

because of (64.2). Therefore Sn(x) — on(x) -> 0 uniformly by virtue of (64.3). But 
for any Fourier series on(x) ->/ (*) almost everywhere, therefore S„(x) -*f(x) almost 
everywhere. Iff(x) is continuous, then ση(χ) -> f(x) uniformly and then Sn(x) -> f(x) 
uniformly, and the theorem is proved. 

As a corollary we deduce the theorem: 
THEOREM 2. (Fatou). If a trigonometric series has coefficients of the form 

a„ = « ( i ) and b„ = o ( | ) , 

then it converges almost everywhere. 
If moreover it is a Fourier series of a continuous function, then it converges uniformly. 
Indeed, it is clear above all that our series is a Fourier series, since ]£(d£ + bl) 

< + oo. Moreover, as we have already said, (64.3) follows from (64.1), which means 
that we have conditions of applicability of the preceding theorem. 

Note. The hypothesis relating to continuity is an additional requirement and does 
not follow from (64.1). It is possible to show that functions exist for which the Fourier 
coefficients satisfy condition (64.1) but, however, they are unbounded in any interval 
ô, lying in [— π, π] (see Chapter VIII, § 13). 

§ 65. Lacunary sequences and lacunary series 

Let us derive some corollaries from Theorem 1, § 64. For this we recall that in 
Introductory Material, § 4 we defined a sequence of natural numbers {nk} as satisfying 
condition (L), if 

oo 1 

Σ — < + °° 
fc=l nk 
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and 00 1 / 1 \ 
Σ — = θ(—\ (m - 1 , 2 , . . · ) . 

k=m nk \nml 
The sequence {nk} is named lacunary if there exists λ > 1 such that 

«fc 
>λ> 1 (/c= 1,2,...). (65.1) 

Finally, it was proved that any lacunary sequence satisfies condition (L). 
Now we will define lacunary series. 
DEFINITION. The series 

Σ (flk cosftfcX + bk sinnkx) (65.2) 

is named lacunary if the natural numbers {nk} form a lacunary sequence (i.e. satisfy 
the condition (65.1)). 

If the sequence {nk} satisfies condition (L) then we will say that series (65.2) is 
an (L)-series (thus, any lacunary series is an (L)-series, but the converse is generally 
not the case). 

We will prove that if the coefficients of an (L)-series tend to zero, then it belongs 
to the class of series studied in § 64. Indeed, the function τ(η) defined in § 64 (see 
(64.2)) in the given case takes the form 

r(n)= Σ**(Ι«*Ι + Ι**Ι)· 

We will prove that τ(ή) = ο(ή), then we will have the conditions of §64. Since 
ak -» 0 and bk -> 0, then for any ε > 0, p is found such that \ak\ < ε and \bk\ < ε 
dXk > p. If nm is the greatest number of the sequence {nk} not exceeding n9 then 

m p m 

τ(») = Σ»*(Ιβ*Ι + Ι** ΙΧΣ"*( Ι β *Ι + lè*D + 2 ε Σ »*· (65.3) 
k=\ k=\ k=p+l 

Since the first term on the right-hand side of (65.3) does not vary with n, then it is 
possible to make n0 so large that this term will be less than en for n > n0. Then 

τ(ή) 2ε ™ 
< H 2J nk < ce (f°r n ^ M o)? 

n nm
 k=p+l 

where c is a constant because for the sequences {%} satisfying condition (L) we have 

m 

Ynk = 0(nm) 
k=l 

(see Introductory Material, § 4). 
Thus 

τ(ή) < cen9 

and since ε is as small as desired, then 

τ(η) = ο(ή) 

and our statement is proved. 
From the proved statement and Theorem 1, § 64, we immediately obtain: 
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COROLLARY 1. If an (L)-series is a Fourier series, then it converges almost everywhere; 
if it is a Fourier series for a continuous function, it converges uniformly. 

From the note made above that any lacunary sequence satisfies condition (L) and 
from Corollary 1 we obtain Kolmogorov's theorem163. 

If a lacunary series is a Fourier series, then it converges almost everywhere. 
Moreover, from Corollary 1 we also immediately obtain : // a lacunary series is a 

Fourier series for a continuous function, then it converges uniformly. 
In Chapter XI, § 6 a stronger assertion will be proved, namely, that under the given 

conditions, the series should also converge absolutely. 
We will now prove yet another theorem relating to sequences satisfying condition 

(L). 
THEOREM. Let {nk} be a sequence satisfying condition (L) andf(x) be a function with 

an integrable square. Then 

^ ( x ) -> f(x) almost everywhere as k -> oo. 
Proof Let 

—z—l· ^](ancos«x + bnsmnx) 

be the Fourier series of f(x), Sn(x) and on(x) be its partial and Fejér sums. Since 
o„(x)->f(x) ELS n-+oo almost everywhere, then it is sufficient to prove that 
Snk(

x) — °nk(
x) "* 0 almost everywhere. 

We will prove that 
oo n 

Σ f Κ Λ * ) - S*(x)]2dx < + oo, (65.3') 

then according to Lebesgue's theorem (see Introductory Material, § 14) the series 

k=\ 

will converge almost everywhere and therefore its general term will tend to zero. 
Thus, it remains to prove the convergence of series (65.3'). As is known, 

1 
Sn(x) "~ °n(x) = r Σ ^(^mCOS/wx + bmsmmx). 

n + 1 m==0 

Therefore due to ParsevaPs equality 

h!* 
nk 

(x) - Snk{x)fdx = Σ m2(A + b2
m). 

\nk + l) m=0 

Let us estimate the sum of the first p terms of series (65.3'); we have 
π 

1 P Γ P 1 nk 

- Σ K J * ) - o„k(x)?dx = Σ fa , U2 Σ m2të + bl) 
M k=l J k=\ Knk -Γ A; m - 0 

P 1 nk 

< Σ - Σ ^ « + bl). (65.4) 
k = l nk m=0 
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To shorten the working-out, we introduce the notation 

vm = m2(a2
m + b2

m). 
We have 

p \ nie nt p I n2 P I nP \ 

Σ τ - Σ ^ = Σ ^ Σ - 7 + Σ ^ Σ ^ + - + Σ Η-Τ· (65·5) 
& = 1

 n
k m=0 k=\ m = \

 n
m m + 1 m=2

 n
m k=np-i + l

 n
p 

But the sequence {nk} satisfies condition (L), and therefore {nl} does so, too (see 
Introductory Material, § 4) and therefore 

oo 1 1 
I 7 < C 7 , (65.6) 

k = m
 n

k "m 

where Cis a constant. But then, supposing n0 = 0, we find from (65.5) and (65.6) that 

p \ nk p I 

Σ -=r Σ » » < c j ( f . k . l + i + - + t O - r . 
& = 1 " * m = 0 k = \

 n
k 

Finally, it is clear from the definition of vm that 

nk 

v„k.1+l + - + v„k <n\ X (a* + *£) (65.7) 
« k - i + 1 

p 1 «k p nk nP π 

Σ -̂ - Σ ». < * Σ Σ (<£ + %) = * Σ (A + b2j< c lf\x)dx 
k = l

 n
k m=Q k=l « k _ i + l /n = l —n 

for any/?. Hence the convergence of the series on the right-hand side of (65.4) follows 
and this concludes the proof of the theorem. 

COROLLARY 2. From the statement just, proved, KolmogorovV61 theorem follows. 
If {nk} is a lacunary sequence and f(x)eL2, then 

Sn(x) ->f(x) almost everywhere. 

66. Smooth functions 

For the further investigation of the series which we considered in § 64 and also in 
many other problems, it will be useful to understand the concept of a smooth function. 

DEFINITION. The function F(x) is said to be smooth at the point x, if 

F(x + A) + F(x - A) - 2F(x) 
> 0 as A->0. (66.1 ) 

Defining for brevity's sake 

A\F = F(x + A) + F(x - A) - 2F(x), 

we can say that the smoothness of F(x) is characterized by the equality 

A\F=o{h). 

If equality (66.1) is fulfilled uniformly relative to x for some interval [a9b], then 
we say that F(x) is uniformly smooth in this interval. 
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The word "smooth" is evidently introduced to represent the following idea: if 
F(x) is smooth at some point, then this point cannot be angular. Indeed, ifA2

hF = o(h) 
at the point x, then 

F (x + h) + F(x -h)- 2F(x) _ F(x + h) - F(x) F(x -ft)- F(x) 

h ~ h ~h 

= o(l), 

i.e. if a derivative exists on the right of the point x, then a derivative also exists on the 
left and they should be equal to one another. Moreover, if F(x) is smooth at some 
point, then at the same point 

D+F = D~F = DF and D+F = D_F = DF, 

where D+F and D~F denote the upper right and upper left derivatives and DF the 
upper derivative (when they are equal); similar notation is used for the lower deriv-
atives. 

We note that if/(x) is continuous at the point x or only "symmetrically continuous," 
i.e. 

f(x0 + h) — f(x0 — h) -> 0 as h -» 0, 

then the primitive F(x) off(x) satisfies the condition of smoothness at this point, since 

h 

F(x0 + h) + F(x0 - A) - 2F(x0) = j [f(x0 + t) - f(x0 - t)] dt = o(h) 
o 

as h -> 0. 
However, smooth functions, in spite of their name, should not necessarily possess a 

derivative almost everywhere; moreover, they can be devoid of a derivative almost 
everywhere, as we will see later (see Chapter XI, § 4). However, the following theorem 
holds : 

THEOREM 1. IfF(x) is continuous and smooth in some interval (a, b), then it possesses 
a derivative Ff(x) in a set F of the power of the continuum in any interval (α, β) lying 
within (a,b). 

To prove this we first note that if the function F(x) possesses a maximum or mini-
mum at some point x0 within the interval [a9 b], then F'(x0) exists and equals zero. 
In fact, we have 

F(x0 + h) + F(x0 - h) - 2F(x0) _ F(x0 + h) - F(x0) F(x0 - h) - F(x0) 
h h + h 

(66.2) 

But at the maximum (or minimum) point neither terms on the right-hand side of 
(66.2) are positive for sufficiently small h > 0 (or correspondingly negative). Therefore 
since their sum tends to zero, it follows that each of them tends to zero, and then 
F'(x0) exists and equals zero. 

Now let [α, β] be any interval within (a, b) and L(x) = mx + n be a linear function 
coinciding with F(x) at x = a and x = ß. The difference g(x) = F(x) — L(x) is a 
smooth function returning to zero at the end points a and ß. This means that g(x) 
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has an absolute maximum or minimum at some point x0 inside (a, jS). Therefore, 
g'(x0) = 0, which means that F'(x0) exists and equals m. Hence, in particular, it 
follows that for continuous and smooth functions the first mean value theorem holds, 
i.e. 

F(b) - F(a) = (b - d)F'(k), α<ξ < b. 

We have proved that in any [α, β] within (a, b) there are points where F'(x) exists. 
But it can be proved moreover that the set of these points is of the power of the 
continuum. Indeed, let y be given such that oc < y < β. A point x0 is found in (a, y) 
where F'(x) exists and equals the tangent of the angle of inclination of the chord con-
necting the points (a, F {ex)) and (γ, F(y)). If the inclinations corresponding to different 
γ are different, then the corresponding points x0 are also different. But if the curve 
y = F{x) is not a rectilinear interval in (a, β) (if this were the case the theorem has 
already been proved), then the magnitudes of the tangents of these slopes form the 
interval, i.e. their set is of the power of the continuum and therefore the points of 
differentiability of F{x) belong to a set with power of continuum in the whole interval. 
The theorem is proved. 

We will now give a definition for later use. 
DEFINITION. We say that the function j (x) possesses the property D in some set E, if 

for any two oce E and β e E and for any number C, contained between/(a) and/(/5), 
a point ye Eis found lying between a and ß such that f(y) = C. 

The letter D is derived from Darboux's name, since he noticed that this property 
was possessed not only by functions continuous in some interval but also by some 
discontinuous functions; in particular, if /(x) is an exact derivative, i.e. if F(x) exists 
such tha t / (x) = F'(x) at every point of some interval, then it possesses property D 
in that interval. 

Let us prove a theorem. 
THEOREM 2. IfF(x) is continuous and smooth in some interval (a,b), then its derivative 

F'(x) possesses property D in the set E of all the points where it exists. 
This set E, as we can see from Theorem 1, is not only not empty but is of the 

power of the continuum in every interval [α, β] within (a9b). 
Let oce E,ßeE 

A = F'(*)9 B=F'{ß) 

and let C be contained between A and B; for example, let us define A < C < B. We 
should prove the existence of x0, a < x0 < ß, x0e E, such that F'(x0) = C. If we 
subtract Cx from F(x) then it is possible to assume C = 0, and then A < 0 < B. 

Let us suppose for a fixed h that 

F(x + A) - F(x) 

We choose h such that 0 < h < b — ß and moreover we suppose its range to be so 
small that 

sW<0, g(f»o, m - f - *> > o. 
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Since g(x) is continuous in [α, β], then in this interval [α, ß] there are points where it 
becomes zero. Let y be the furthest left of these points. From 

F(y + h)- F(y) 
g(y) = 1 = o 

it follows that F(y + h) = F(y). If x0 is a point in (y, y + A), where F(x) reaches a 
maximum or minimum, then F'(x0) = 0 = C. But since 

g(a) < 0 and gQS - A) = > 0 

because of the given choice of A, then 

a < y < ß - A 

which means that (γ,γ + A) lies inside [a, β], therefore x0 is also inside [oc9ß]. 
Moreover, since F'(x0) exists, then x0 e E. Thus we have found a point x0 e E9 where 
F'(xo) = C, and the proof is concluded. 

We will apply the results obtained to the investigation of the behaviour of the sum 
of the trigonometric series considered in § 64. First we will prove this theorem: 

THEOREM 3. If the coefficients of the series 

satisfy the condition 

——h Σ (an cosnx + bn sinnx) (66.3) 

τ(») = ΣΛ(|α*| + |**|) = ο(/ι), (66.4) 
k = \ 

then the sum of the integrated series 

EV % a° , ^ ™ bn cosnx - an sinnx 
F(x) = —x + C - Σ (66·5) 

is a function which is continuous and uniformly smooth in [0, 2π]. The series (66.3) con-
verges at those points and only at those points where F' (x) exists and besides, ifN = [1 \h\ 
then the equality 

F(x + h) - F(x - h) \a0
 N 

2h + Σ (ak c o s kx + bk sinkx) 
2 A: = l 

0 as h -> 0 

(66.5) 
occurs uniformly relative to x in [0, 2π], 

In order to be able to speak correctly of the sum of an integrated series, it must be 
proved that it converges. But because 

r(k) - x{k - 1) 
1**1 + 1**1 = - ^ — r (£=i ,2 , . . . ) , 
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then the series (66.5) is majorized by the series 

£ M + \bk\ _ £ r(k) - x(k - 1) « /_1_ 1 \ 

185 

fc = l 

/ Ä 1 

-&M < + 00 

(we applied Abel's transformation here). Hence it is clear that series (66.5) converges 
absolutely and uniformly. Let F(x) be its sum, therefore, it is continuous in [0, 2π]~ 

Now in order to prove the theorem we suppose 

Ak = ak coskx + bk sinkx, Bk = bk coskx — ak sinkx. 
Then 

F(x + h) - F(x - h) 
2A Λ ν ' Α ι \ A;A 

= Ρ + β . 

Since in the neighbourhood of the point u = 0, we have 

sin» 

=N+1 

sin&A 

then 

- 1 = 0(u2) < C\u\, 

\P\ < C\h\ £ (|e4| + \bk\)k < C^r(JV) = 0(1), 
k = 1 ^V 

^<m.I , M f M < 1 
Α|*-5+Μ*2 (fc + 1)2) 

and thus (66.2) is actually fulfilled, and moreover uniformly relative to x in [0,2π\. 
Similarly we have 

F(x + 2h) + F(x - 2A) - 2F(x) » sin2kh 
Ah 

h siMh 
k=l 

-X.*:=Tf1+. Σ .* 

Since |sini/| < \u\, then 

kh 

Pi+Qi. 

k=N+l 

sin2kh 
kh 

ΙΛΙ < 1*1 Σ 1**1 * < |A| Σ(Ι«*Ι + \b*\) k = \h\ τ» = o(l), 
k=l k=l 

ßi l<TTT Σ £ = ö(l), 
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as we have already seen in estimating Q; therefore 

F(x + 2Λ) + F(x - 2Λ) - 2F(x) = o(h), 

i.e. F(x) is uniformly smooth in [0, 2π]. 
Finally, from (66.6) it is clear that series (66.3) converges at those points and only 

at those points where a symmetrical derivative of F(x) exists, i.e. 

F(x + h) - F(x - h) 
hm — 
A->o 2" 

and the sum S(x) of this series equals its symmetrical derivative. 
But since for smooth functions where a symmetrical derivative exists, the normal 

derivative also exists, then the latter part of the theorem is proved. 
Note. The proved theorem is valid for lacunary series with coefficients tending to 

zero, since for them the conditions of Theorem 3 (see § 65) are fulfilled. 
COROLLARY 1. If for a trigonometric series the conditions of Theorem 3 are fulfilled, 

then the series converges in a set of the power of the continuum in any interval (a, b) 
e [0, 2π] and its sum S(x) possesses property D in a set of those points where it exists. 

In particular, this property is possessed by any lacunary series, provided its co-
efficients tend to zero. 

Indeed, by virtue of Theorem 3 S(x) exists where and only where F'(x) exists for 
a smooth function F{x) defined by equality (66.5) and moreover S(x) = F'(x); then, 
reference must be made to Theorem 2 and the proof is concluded. 

COROLLARY 2. If the coefficients of a trigonometric series satisfy the conditions of 
Theorem 3, then its sum cannot have points of discontinuity of the first kind. 

Indeed, in the neighbourhood of a point of discontinuity property D would not be 
fulfilled. 

For the case when the coefficients satisfy a stronger requirement 

an = o l—J , bn = o l—J , (66.7) 

we have already obtained a similar result (see § 42). 
Note I. From Theorem 3 it is possible to obtain a new proof of Fatou's theorem 

(see § 64) that a series with coefficients satisfying (66.7) converges almost everywhere. 
Indeed, since from (66.7) it follows that £ {a2

n + bl) < + oo, then the series F(x) is 
a Fourier series. Therefore the sum F(x) of an integrated series is an absolutely con-
tinuous function (see §40) and therefore, F'(x) exists almost everywhere. Then due 
to Theorem 3, the series (66.3) converges almost everywhere. 

Note 2. If condition (66.4) only is fulfilled and not condition (66.7), then series (66.3) 
can even diverge almost everywhere. We meet examples of this kind in § 3 of Chap-
ter XI. 

§ 67. The Schwarz second derivative 

The concept of a smooth function studied by us in § 66 will play a great part in 
later work; but before turning to its application, we must first introduce yet another 
new concept. 
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DEFINITION. Let the function F(x) be defined in some neighbourhood of the point x; 
if the limit of the expression 

F(x + h) + F(x -h)- 2F(x) 
(67.1) 

exists as A -> 0, then it is said that Fix) possesses at the point x a Schwarz second 
derivative and we write 

F{x + h) + F{x - h) - 2Fix) 
D2Fix) = lim 

h2 (67.2) 

If the relation (67.1) does not tend to a limit as h -> 0, then the values 

- — Fix + h) + Fjx-h)-2Fix) 
D2Fix) = Iim τ-2 

Ä->0 n 
and 

D2F{x) = lim 
Fix + A) + Fix - A) - 2F(x) 

are called respectively iAe upper and lower Schwarz derivatives at the point x. 
We will show that if Fix) possesses a normal second derivative F"ix) at the point x, 

then D2Fix) exists and 
D2Fix) = F"ix). (67.3) 

Indeed, if F"(x) exists at the point x9 then Ffix) is continuous at the point x and 
therefore F'ix) is bounded in the neighbourhood of the point x. It is clear that 

h 

A\F = Fix + h) + Fix - A) - 2F(*) = J [/*(* + 0 - F7(x - t)]dt. (67.4) 
o 

Hence 

^ ^ 
h2 F"{x) = |2,p + , ) - f - ( , - , )_ f „ M Λ 

\F{x + t)-F{x-t) 
< max F/fix) 

te(o,h) I 2i 

->0 as A->0, 

i.e. (67.3) is proved. 
On the other hand it is clear that D2Fix) can exist without F,fix) existing; for 

example, if Fix) is a continuous odd function, then at the point x = 0 we have 

Fix + h) + Fix - h) - 2F(JC) = F(A) + F ( - A ) = 0 

for all A, which means that D2F = 0 at x = 0, whilst ^"(0) cannot exist, if we only 
require that Fix) be continuous and odd. 

Thus, the Schwarz second derivative is a direct generalization of the normal second 
derivative. 

We now note that, as in the case of the normal second derivative, we have: if x is 
a maximum point and D2Fix) exists at it, then D2Fix) < 0 and at a minimum 
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D2F(x) > 0. This follows from the fact that Ah
2F(x) < 0 for sufficiently small A at 

the maximum point and Ah
2F(x) > 0 at the minimum point. 

The analogy continues still further. Thus the following theorem holds. 
THEOREM. If F(x) is continuous in [a, b] and D2F(x) = 0ina<x<b, then F(x) 

is linear in this interval. 
In order to prove this, take any ε > 0 and consider an auxiliary function 

φ(χ) = F(x) — F(a) (x — a) + ε(χ — a) (x — b). 

It is clear that φ(ά) = ψφ) = 0. We will prove that it cannot assume positive values 
in [a, b]. Indeed, if this were the case, then because of the continuity of φ(χ) it would 
attain its maximum somewhere within [a, b], i.e. a point JC0 would be found in this 
interval, where it would be known that Ό2φ(χ0) < 0. But, on the other hand, 

Ό2φ(χ0) = D2F(x0) + 2ε, 

since the Schwarz second derivative of the sum equals the sum of the Schwarz second 
derivatives, and the term ε(χ — a) (x — b) has the normal second derivative equal 
to 2 ε, which means that the Schwarz second derivative has exactly the same mag-
nitude. 

But Ό2φ(χ0) < 0, D2F(x0) = 0, and we obtain ε < 0 which contradicts the choice 
of ε. 

Thus φ(χ) < 0 everywhere in [a, b], i.e. 

If we were to put a minus sign in front of ε in the expression for φ (χ), we would 
prove in exactly the same way that φ(χ) > 0 everywhere, i.e. 

F(b) - F(a) 

Therefore 

F (x) - F(a) - F ( I ~ F (e) (χ _ α) Lj φ _ αγ (67 5) 
b — a | 

But ε is quite arbitrary, therefore the left-hand side of the inequality (67.5) should be 
equal to zero, whence 

F(x) = F(a) + — 7 — {x - a), 
b — a 

which means that F(x) is linear. The theorem has been proved. 
We will now apply the concept of the Schwarz second derivative to a method of 

summation of trigonometric series. 
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§ 68. Riemann's method of summation 

Let us consider the trigonometric series 

Q 00 

-y + Σ (tffic°SH* + bnsinnx)9 (68.1) 
** «=1 

the coefficients of which tend to zero (or are only bounded). Then, integrating it 
twice term-by-term, we obtain 

— x2 + Cx + D - Y = . 
4 t i n2 

It is clear that this series converges absolutely and uniformly (because a„ and bn are 
bounded); let us denote its sum by F(x). It is a continuous function which we will 
name the Riemann function for the trigonometric series (68.1). Thus 

, v a0 „ f° ancosnx + bnsmnx 
F(x) = -f- x2 + Cx + D - Y ^ . (68.2) 

4 t>\ n2 

We assume that at some point x0 the function F(x) possesses a Schwarz derivative 
D2 F(x0). Theai we can say that the series (68.1) is summable at the point x0 by Riemann's 
method and its Riemann sum equals D2F(x0). 

In order to verify this statement, we will prove Riemann's theorem : 
THEOREM I. If a trigonometric series with coefficients tending to zero converges at 

a point x0 to a value S, then it is summable at this point by Riemann's method to the 
same value S. 

To prove this, we note first of all that it immediately follows from formula (68.2) 
after elementary trigonometric transformations that 

F(x0 + 2h) + F(x0 - 2h) - 2F(x0) 

Ah2 

Q oo / sin nh\2 

= ~γ + Σ (an cosnxo + bn ûnnxo) (—τ—I . (68.3) 

For brevity's sake we assume 

A0 = — , An = ancosnx0 + bn$mnx0. 

From formula (68.3) it is immediately evident that for the summability of series (68.1) 
by Riemann's method at the point x0 to a value S it is necessary and sufficient that 

Γ « isinnh\2l (smnh\2^ 

Thus, Theorem 1 will only be proved when we prove Theorem 2 : 
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00 

THEOREM 2. Let the series A0 + ]T An converge and S be its sum; then 

lim 
Γ _£ /smnh\2 

= s. (68.4) 

We will now prove this latter assertion. Let us suppose 

Rn= Σ A-
k=n + \ 

From the convergence of the series ]T An it follows that for any ε > 0 it is possible 
to find TV such that 

\Rn\ <ε at n > N. (68.5) 
We now write 

_E° /sin«A\2 £ /sinwA\2 J° /sin«A\2 

* + »?/<■ tar) - A° + ,?Λ ( Ί 5 - ) + Σ,-4· far) · (68·6> 

sin «A 
If« is fixed and A -> 0, then —— > 1, and therefore for sufficiently small h 

nh 

N /sinnhx2 
£ smnhy 

Α0 + ΣΑ« \~~nh~) " (y4° + ^ 1 + ' " + AN) < 8. 

Moreover, 
N 

Ä: = 0 
= 1**1 <* 

due to (68.5), and therefore from (68.7) and (68.8) 

® /smnh\2 
® /smnh\2 

< 2ε, 

(68.7) 

(68.8) 

(68.9) 

if only h becomes sufficiently small. 
Thus in order to prove (68.4) it is sufficient to prove that the last term on the right-

hand side of formula (68.6) can be made as small as desired as h -» 0. But we have 
An = .#„_! — Rn, which means that 

„?/· tar -&«« - *> tar 
7sin«A\2 /sin(« + 1)A\ /sm(N+l)h\2 « r /s in«A\2 /sm(« + 1)A\ 

*" I (N + 1) A""/ " Λ ι ^ l\~nV) " \ (« + 1)A ) 
(68.10) 

(Abel's transformation used here is valid, since as n -> oo and A being any value 

file:///~~nh~
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Rn (Smn I -» 0). But by virtue of (68.5) we obtain from (68.10) 

I » /s in«A\2 | « I /sin«A\2 /sin(« + 1)A\2| 

PIA 

f I </ / s inA : 

J h/7 \~T/ 

= e + ε £ 
JV+1 

«Ä 

< ε + ε dt < ε + ε 

00 

f I </ / s inA: 

J 77 \ T / 
(ΛΓ+1)Λ 

dt 

(68.11) 

and it remains to prove that the last integral is finite, then the whole of the right-
hand side of (68.11) is less than Ce, where C is a constant, and since this is true for 
any A, then it is also true as h -* 0. Since 

d / s i n A 2 sin* /cos / 
it \ t ) ~ t t 

smt 
dt 

then in the neighbourhood of t = 0 the function under the integral sign is bounded,, 
moreover, as t -> oo we have 

d / s inA 
dt \ t J 

21 t+l 
< 2—r- »£). 

and therefore the integral in formula (68.11) does indeed have meaning and the proof 
is concluded. ^ 

Note. In the proof of Theorem 2, we considered the series £ An to be a numerical 
/i=0 

series, without being concerned with the fact that it was obtained from a given tri-
00 

gonometric series. It can be said in general that the numerical series £ un is summable 
by Riemann's method to the value S, if n^° 

lim 
Ä-»0 

£ (smnh\ 
S. 

In this case Theorem 2 is a statement that Riemann's method is regular. 
Now it must be said that the functional series J] un(x) is summable by Riemann's 

method uniformly to S(x) in the set E, if 
2Ί 

lim 
rt-> 00 

i° /sinnh\2 

= 5(x) 

uniformly relative to x in E. 
From the proof of Theorem 2 it is immediately evident that the uniform con-

vergence of £ un(x) in E to S(x) implies its uniform summability by Riemann's 
method to S(x) in E. 

This note will be used essentially in § 71. 
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We will now return to the study of the Riemann function F(x) and will prove yet 
another theorem due to Riemann. 

THEOREM 3. If the coefficients of a trigonometric series tend to zero, then its Riemann 
function is uniformly smooth in [—π, π]. 

This theorem follows quite quickly from the results of § 66. Indeed, if we integrate 
the series 

~w~ + Σ (an cosnx + bn sin«x), (68.12) 

where an -> 0, bn -> 0, then we obtain a series with coefficients of order o(l/n) 

a° , ^ ^ bncosnx - ansinnx 
— * + C - X . (68.13) 
i n 

Integrating the series (68.13), we obtain according to the theorem of § 66 a series, the 
sum of which should be uniformly smooth. But this sum F(x) is the sum of a series 
obtained by the double successive integration of (68.12), and therefore it is also the 
Riemann function for the series (68.12) and the theorem is proved. 

We will use this theorem in § 70 but first we will consider the application of Rie-
mann's method to Fourier series. 

§ 69. Application of Riemann's method of summation to Fourier series 

Riemann's method, as well as the methods of Fejér and Abel-Poisson, when applied 
to Fourier series, gives the following result: 

THEOREM. The Fourier series for any summable function f(x) is summable by Rie-
mann's method almost everywhere to this function. 

Indeed, let 
Q 00 

f(x) ~ ~w~ + Σ (an coswx + bn sin«*). (69.1) 

We have an -> 0 and bn -» 0, since these are Fourier coefficients. According to the 
theorem of § 40, the Fourier series can be integrated term by term; in other words, if 

F(x)='jf(t)dt, 
—π 

then 

m - C + ± x - i ^ 0 5 " * - " " 5 " " * , (69.2) 
2 n==i n 

whilst because of the absolute continuity of F(x) the series (69.2) converges every-
where to it and even uniformly in [— π9 π]. Moreover, if Φ(χ) is an indefinite integral 
of F(x), then 

^ , N a0 „ ™ ancosnx+ bn sinnx 

4 t\ n2 
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and therefore the Riemann function Φ(χ) for the series (69.1) is the result of the 
double successive integration of/(x). But since F(x) is continuous, then Φ'(χ) = F(x) 
at every point; moreover F'(x) = f(x) almost everywhere; thus Φ"{χ) =f(x) al-
most everywhere but since Ό2Φ{χ) = Φ"(χ) then, where Φ"(χ) exists (§ 67), Ό2Φ(χ) 
= f{x) almost everywhere, and therefore the series (69.1) is summable almost every-
where t o / ( x ) by Riemann's method. 

The theorem is proved. 
We now begin to apply Riemann's method to general trigonometric series and 

especially to the very important question of the uniqueness of the expansion of a 
function into a trigonometric series. 

§ 70. Cantor's theorem of uniqueness 

Using Riemann's method of summation, we can answer the following important 
question; can two different trigonometric series exist which converge at every point 
to the same function/(*)? The answer to this question is in the negative. In order to 
prove this, we first prove the following important theorem: 

CANTOR'S1 1]
 THEOREM. If the trigonometric series 

— + £ (an cosnx + bn sinnx) (70.1) 

converges to zero at every point x of [0, 2 π], then all its coefficients equal zero. 
According to Cantor's Theorem, the coefficients of the series (70.1) tend to zero 

(this follows not from the Cantor-Lebesgue theorem, but from Cantor's own theorem — 
see § 62, note). If we construct the Riemann function F(x) for series (70.1), it is con-
tinuous along the whole infinite straight line. According to the theorem in § 68, the 
series (70.1) should be summable to zero at every point, i.e. 

D2F(x) = 0 -π<χ<π. 

Then according to the theorem of § 67 we have 

F(x) = Ax + B. (70.2) 

But on the other hand since F(x) is the Riemann function for the series (70.1), then 

fl0 , , ^ Ä ancosnx + bnsinnx 

n=l 

From (70.2) and (70.3) we obtain 

F(x) = ^-x2+Cx + D- ϊ*™η*^ΜΜΒΛ, (70.3) 

a0 » a„ cosnx + bn sinnx 
— χ2 + Αιχ + Β1 = Σ - r - 5 » (70·4> 4 „=ι 

where Ai and Bi are new constants. But the right-hand side of (70.4) has a period 2 π9 

which means that the same applies to the left-hand side and this is possible only for 

a0 = 0 and Ax = 0. (70.5) 
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We now have 
S a„cosnx + bnsmnx 

* i = Σ ^ · (70.6) 

Series (70.6) converges uniformly; therefore (see § 12) its coefficients are the Fourier 
coefficients for its sum, but that is a constant number B1 and therefore 

_ _ = _ _ = 0 (n= 1 ,2, . . . ) , 

whence 
an = bn = 0 ( n = 1,2, . . . ) . (70.7) 

From (70.5) and (70.7) it follows that series (70.6) has all its coefficients equal to 
zero and thus Cantor's theorem is proved. He immediately generalized this theorem, 
by proving the following statement: 

If a trigonometric series converges to zero everywhere apart, perhaps, from a finite 
number of points, then all its coefficients equal zero. 

In fact, arguing in exactly the same way as in the proof of the preceding theorem, 
we see that the series under consideration has coefficients tending to zero and its 
Riemann function F(x) should be linear in every interval where the series converges 
to zero, since then D2F(x) = 0. But F(x) should be smooth by virtue of Theorem 3 
of § 68. Therefore it cannot possess angular points. Consequently it cannot consist 
of different rectilinear intervals and should be simply linear. But if this is so, then the 
proof is concluded as in the previous theorem, i.e. we prove that all the coefficients 
of the series equal zero. 

Note. Cantor's theorem can be expressed in the following more general form: if a 
trigonometric series with coefficients tending to zero is summable to zero by Riemann's 
method everywhere apart, perhaps, from a finite number of points, then all its coefficients 
equal zero. 

Indeed, in proving the theorem we only use the facts that the coefficients of the 
series tend to zero and D2F(x) = 0 everywhere apart, perhaps, from a finite number 
of points. 

COROLLARY. Let f(x) be a function with period 2π, which is finite at every point of 
[0, 2π]. Then, there do not exist two different trigonometric series, each of which con-
verges to f(x) everywhere in [0, 2π] apart, perhaps, from a finite number of points. 

Indeed, we will suppose that two such trigonometric series do exist; then their 
difference would be the series 

an °° 
— + Σ (an cosnx + bn sinnx), (70.8) 

in which not all the coefficients equal zero, but it converges to zero everywhere apart, 
perhaps, from a finite number of points. However, we have already seen that this is 
impossible. 

Here, it is true, the requirement of convergence can be replaced by summability 
by the Riemann method (but in this case it is previously required that the coefficients 
tend to zero). 
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The theorem on the uniqueness of the expansion of a function into a trigonometric 
series permits considerable generalizations. We will devote Chapter XIV to this 
problem; here we will confine ourselves to formulating the most important results. 
For this purpose we introduce a definition. 

DEFINITION. The set E, lying in [—π, π] , is known as an M-set, if there exists a 
trigonometric series 

a0 » 
— + 2] (an cosnx + bn sin«*), 

2
 n = i 

in which not all the coefficients equal zero and which converges to zero everywhere 
in [— π, π] outside the set E. 

If the set E is not an M-set, then we call it a U-sef\. 
Using this definition, we can now formulate the two preceding theorems thus; if 

E is an empty or finite set, then it is a U-set. 
Cantor himself proved that any reducible set (i.e. one for which the derived set is 

finite or denumerable) is again a C/-set. Subsequently, Young[1] proved that any de-
numerable set is a £/-set (see § 5, Chapter XIV). 

On the other hand, it is easily proved that any set E,mE > 0, is an M-set. In fact 
let us take a perfect set PeE, mP > 0, and suppose that / (x) = 1 in P and/ (x) = 0 
outside P. From the principle of localization (see § 33) the series o(f) converges to 
zero in every interval adjoining P and therefore everywhere outside E. Thus there 
exists a trigonometric series convergent to zero everywhere outside P but with co-
efficients differing from zero (for example 

In 

1 Γ 1 
a0 = — f{x)dx = —mP). 

71 J 71 0 

Consequently, E is an M-set. 
For a long time it was supposed that, on the contrary, any set of measure zero 

(not only finite and denumerable) should be a £/-set. This hypothesis was refuted by 
Men'shov[1], who set up the first example of a perfect Λ/^set of measure zero (see 
the proof in § 12, Chapter XIV). 

§71 . Riemann's principle of localization for general trigonometric series 

The function F(x) introduced by Riemann plays an important role not only in 
the question of the uniqueness of the expansion of a function into a trigonometric 
series but also in the examination of its convergence or divergence. 

We recall that the following theorem was proved for Fourier series (see § 33) : the 
convergence or divergence of a series o(f) at a point x depends only on the behaviour 
of the function/(#) in the neighbourhood of the point x. 

We will now suppose that we are concerned with an arbitrary trigonometric series, 
not a Fourier series. It seems that it is then possible to judge its convergence by 

t From the definition, it immediately follows that any part of a U-set is a £/-set: on the other 
hand, a set containing an M-set is itself an M-set. 
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studying its Riemann function. Thus we have a theorem, analogous to the preceding 
theorem, which can be expressed in this form: 

For any trigonometric series with coefficients tending to zero, the convergence or 
divergence of the series at some point x depends only on the behaviour of the Riemann 
function F(x) in the neighbourhood of the point x. 

This somewhat indistinct formulation will be stated more exactly later (see p. 200). 
Riemann proved this statement thus: he constructed a function λ(χ), equal to unity 
in [a, β], equal to zero outside (a, b) and possessing continuous derivatives up to the 
fourth order inclusive in [0, 2π], After this, he proved that the difference 

b 

a n 1 f d2 

~w~ + Σ (ak coskx + bk sinkx) F(f)X(t) T Y ^ « ^ - *) dt (71.1) 
2 fc^i H J ät 

a 

tends to zero uniformly in [α, β] and from this he drew the necessary conclusion. 
At the present time the idea of introducing a function λ(χ) has been completely 

maintained but the proof of Riemann's theorem is usually carried out using the theory 
of the formal multiplication of series\\ by the way, this theory also gives many other 
useful results which we will prove in Chapter XIV. 

Thus, we begin with the concept of the formal product of two trigonometric series. 
For simplicity of exposition we will write the trigonometric series in its complex form 

n= + 00 

Σ cué™ (c_B = c„). 
« = — 00 

Let us consider two trigonometric series 

Σ c„e t a (71.2) 
n— — oo 

and 
« = + 00 

Σ 7neinx. (71.3) 
n = —oo 

Let us call their formal product the series 

n^Kne
in\ (71.4) 

n= — oo 

where 
/ ? = + 00 

*„= Σ c,r+-, (71-5) 
p— — oo 

on the supposition that all the series (71.5), defining^, converge^ = 0, ± 1 , ± 2 , . . . ) . 
In all that follows we will be concerned with the case when £ | γη \ < + oo. Under 

these conditions series (71.3) converges absolutely and uniformly in [— π, π] and is 

t This theorem is due to Rajchman (see Rajchman[13 and also Zygmundcl2]). 
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the Fourier series of some function λ(χ). As regards the series (71.2), it can be any 
seriesf providing that 

cn -> 0 as n -► ± oo. 

Let us prove the following two lemmas due to Rajchman. 
LEMMA l.Ifcn-*Oasn-+ ±oo and if the series Σ\γη\ converges, then all Kn de-

fined by formula (71.5) have meaning and Kn-+0 as n -> + oo. 
Indeed, if M = max | cn\, then as n -> + oo 

[|] 
\Kn\ <M Σ ly-pl + max \c,\ f l?V-pl 

<M £ \yq\ + max |c p | £ |y«|->0 as n-*+co 

· — [ T ] ' > [ T ]
 f " " 

and similarly we can carry out the proof for n -+ — oo. Lemma 1 is proved. 
It is said that series (71.3) converges rapidly to S, if it converges to S and if the series 

converges, where 

Thus, for example, if the coefficients of series (71.3) are of order 0(1/«3), then 
Γη = 0(1/H2) and, therefore, series (71.3) converges rapidly. Subsequently we will 
frequently use the series σ(λ) for the series (71.3), where λ(χ) is a function possessing 
three continuous derivatives. Then the coefficients of the series σ(Α) will be of order 
0(1 In2) (see § 24) and σ(λ) will converge rapidly to λ(χ). 

We will now turn to proving the following lemma. 
LEMMA 2. Ifcn-+0asn-> ± oo and series (71.3) converges rapidly to zero in some 

set E, then the formal product (71.4) converges to zero uniformly in the set E. 

t It is appropriate to note here that if series (71.2) is the Fourier series of some function / (*) , 
then the formal product becomes the Fourier series of/ (x) λ(χ). Indeed, if we denote by Kn the 
Fourier coefficients of/(x) λ(χ), then 

n n 

K»=T= \f(t)e-»',X(t)dt=±- I / ( f ) i* jfV.e'«* 
— π — n 

n 
4=4.00 i Λ 4=4-00 p= + oo 

= Σ y*2^ /««-**■·'*= Σ c„_ey,= Σ c,y._p. 
q= — oo J q= — ao p= — oo 

— n 

Here term-by-term integration was valid, since we had assumed that ]T \yn\ < + oo ,and therefore 
series σ(λ) converges uniformly. 
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Indeed, let x0 e E and 
00 

Rk{x) = Yyne
inx. 

n=k 

We have for k > 0 

|Ä-k(*o)l = 

which means that the series 

Σ yneinxo 

-k 
Σ y^ l**+i(*o)l < Λ + ι (71.6) 

A:= + oo 

Σ I**WI 
k= — oo converges uniformly for xeE. 

Then 
n=+m « = + m p= + co 

Qm(xo) = Σ KneinXo = Σ einx° Σ W 
n——m n=—m /?= —a 

p= + ao n=+m 

p= — oo n=—m 

= Σ βρβ""0 Σ r« e 

p= — oo q=—m—p 

iqxo 

Therefore 

p= + co p = + oo 

= Σ Î - P ^ 0 *-m-p(*o) - Σ ^^»Λ Μ _ ρ + 1 (Χο) . 
p= — oo /?= —oo 

p= + oo p=-\-<x> 

|β«(*ο)Ι< Σ kpl |Α-„_,(*0)Ι + Σ \cP\\Rm-p-i(xo)\, 
p= — oo /?= —oo 

and, taking into account the inequality (71.6), by the same arguments as in Lemma 1, 
we prove that Qm(x0) -» 0 as m -► oo and moreover uniformly for xQ e E, since the 
estimate of Rk(x0) in terms of Γκ or i~\+1 is valid for all xe E. 

From these two lemmas we can deduce a theorem: 
THEOREM 1. If the series (71.3) converges rapidly to some function λ(χ) and cn -> 0, 

then the series 
« = + oo « = + oo « = + oo 

Σ [K. - λ(χ) cn] e<"* = Σ Κηέ«*-λ(χ) Σ c»e'» (71.7) 

converges uniformly to zero in [— π , π ] . 
In order to prove this we suppose that 

yt = 7o - *(*), 

for n φ 0 

and set up the formal product Σ K*einx of the series £ cne
iw* and Σ y*einx. It is true 

that in the latter series γ* is not a constant value, but it is not difficult to show that 
the proof of Lemma 2 would not be changed, if we supposed γ0 to be a bounded 
function of x, which occurs in our example. Therefore we can apply Lemma 2, since 
the series Σ y*einx converges rapidly to zero in [— π, π] and we find that Σ K*einx 

converges rapidly to zero uniformly in [— π, π]. But 

* ? = P Σ ° ^ η - Ρ = C n f r o » * ( * ) ] + Σ ' < ^ - Ρ = K n ~ Kx) Cn9 
p = —oo Z?^« 
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and therefore 
YJKneinx^X(x)YJcneinx 

converges to zero uniformly in [—π, π] and Theorem 1 is proved. 
Combining Lemma 2 and Theorem 1, we can express a proposition which we will 

use later. 
COROLLARY 1. Let λ(χ) be a function for which the Fourier series converges rapidly 

and Σ cneinx a series whose coefficients cn -► 0 as n -> ± oo. Then the formal product 
of the series ]£ cneinx and the Fourier series for λ(χ) converges to zero everywhere where 
λ(χ) = 0 (even if the series ]£ cneinx diverges). At those points where λ(χ) Φ 0, it 
diverges if the series ]T cneinx diverges and it converges to λ(χ0) S(x0) z/J] cneinx con-
verges to S(x0). 

Note 1. We will remark that this statement can be strengthened. Thus, if we suppose 
that λ(χ) Φ 0 at some point then 

lim Qn (x0) = λ (χ0) lim Sn (x0), 

lim Qn (*o) = A(x0)lim5w(x0) 
and 

lim on(^o) = X(x0)]imSn(xo), 

at λ(χ0) > 0 

at λ(χ0) < 0. 
limQn(x0) = X(x0)limSn(x0) 

This follows immediately from an examination of the partial sums of the series 

YJKneinx-X(x)YJcnein\ 

which, as we have seen, converges to zero. Therefore, in particular, if lim |5n(x0)t 

= + oo, then lim |ß„(x0)l = + oo also. 
This result will be used specifically in Chapter XIV. 
From Theorem 1 it also follows immediately that: 
COROLLARY 2. If the Fourier series for λ(χ) converges rapidly and ]T cneinx converges 

uniformly in E to S(x), then the formal product converges uniformly in E to λ(χ) S(x). 
If in a set F we have \λ(χ)\ > a > 0, then the uniform convergence of a formal product 
in E implies the uniform convergence of^ cneinx in it. 

Note 2. In Corollaries 1 and 2 the words "convergence" or "uniform convergence" 
can be replaced by "summability" or "uniform summability" by the Riemann method. 
In fact, according to Theorem 1, 

^lKn-X(x)cn\einx 

— oo 

converges to zero uniformly in [—π, π]. By virtue of the note to Theorem 2 of § 68 
it follows that this series is uniformly summable to zero by the Riemann method in 
[ — π9 π], and this means that the difference of the series 

Y,Kneinx and X(x)Yucn& 
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is uniformly summable to zero by the Riemann method in [ — π, π], whence the re-
quired result immediately follows. 

We can now prove the following important theorem: 
THEOREM 2. If a trigonometric series with coefficients tending to zero is summable by 

the Riemann method to zero at every point of some interval (a,b), then it converges to 
zero at every point of {a, b) and moreover uniformly in any interval lying entirely within 
(a, b). 

Let λ(χ) = 1 in [α, β], λ(χ) = 0 outside (a, b) and λ(χ) be interpolated between 
[a, oc] and [b, β] as desired, provided it possesses continuous derivatives up to the 

I 

0 a (x β b lJt 

FIG. 14 

hird order inclusive (see Fig. 14). We have already said that under these conditions 
he series σ(λ) converges rapidly. Let 

o(X) = y£yne
tnx. 

We will set up the formal product (71.4) of the given series and the series σ(Α). Since 
λ(χ) = 0 outside (a, b), then by virtue of Corollary 1, the series (71.4) converges to 
zero outside (a,b), which means that it is summable outside {a, b) to zero by the 
Riemann method. Moreover, by virtue of Corollary 1 and Note 2 concerning sum-
mability, series (71.4) is summable to zero by the Riemann method at every point of 
(a, b), because we have assumed that this holds for series (71.2) in (a, b). Thus, series 
(71.4) is summable by the Riemann method to zero at every point in [ — π,π]. If 
this is so, then according to the theorem of § 70 (see its note), it possesses all coef-
ficients equal to zero. But according to Theorem 1 of this section the series 

YaKne
inx-X{x)YJcne

inx 

converges to zero uniformly in [ — π, π]. If all kn = 0, then this means that 

λ(χ)Σ^ίηχ 

converges uniformly to zero in [ — π,π]. But λ(χ) = 1 in [<x, β], therefore ]£ cne
inx 

converges uniformly to zero in [a, β], and the proof of Theorem 2 is concluded. 
Now we will express in an exact form and prove a theorem which was formulated 

to some extent at the beginning of this section. So we have the following theorem which 
is known as Riemann's principle of localization. 

RIEMANN'S PRINCIPLE OF LOCALIZATION. Let Ft(x) and F2(x) be Riemann functions 
for two trigonometric series with coefficients tending to zero; if these functions are equal 
in some interval (a, b) or, perhaps, if their difference is a linear function in (a, b)9 then 
the difference of the given trigonometric series is a series convergent to zero everywhere 
in {a, b) and moreover, uniformly in any interval [a, β] lying entirely within (a, b). 

λ(χ) 

x 
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To prove the theorem, let us consider two trigonometric series with coefficients 
tending to zero. Let (71.2) be the difference of these series, and Fi(x) and F2 (x) their 
Riemann functions. Then, according to the condition of the Riemann theorem, the 
sum F(x) for series (71.2) is a linear function in (a, b). If this is so, 

D2F(x) = 0 in (a,b) 

then, consequently, series (71. 2) is summable to zero by the Riemann method at 
every point of the interval (a, b) and Theorem 2 can be applied. 

From Riemann's principle of localization the truth of the statement made at the 
beginning of the section follows immediately, the convergence or divergence of a series 
with coefficients tending to zero depends only on the behaviour of the Riemann 
function. 

Indeed, if for two series with coefficients tending to zero, we have FY (x) = F2(x) in 
(a,b), then the convergence or divergence of both series at any point xe(a,b) can 
only occur simultaneously (and also if they converge, they possess the same sum). 
It is in this sense that it should be understood that convergence or divergence depends 
only on the behaviour of the Riemann function. 

It should be noted that the general Riemann principle of localization proved here 
includes, as a particular case, Riemann's principle of localization for Fourier series 
(see § 33). Indeed, if the two given series are Fourier series for/i(x) and/2(*)> then 
the functions Ft(x) and F2{x) are obtained as a result of the double successive inte-
gration oî fx(x) and/2(x) (see § 70), and, therefore, if / i(x) — f2(x) in (#, b), then 
F1 (x) — F2(x) will be linear in this interval, and if the general principle of localization 
has already been proved, then it can be»stated that a(/ i) — o(f2) converges to zero in 
(a, b) everywhere and moreover uniformly in [a, jS], lying within (a, b). 

In Chapter XIV we shall see the part played by Riemann's principle of localization 
which has been established here. 

§ 72. du Bois-Reymond's theorem 

Let/O*;) be a function which is finite at every point of [—π, π ] . We have already 
seen (see § 70) that there cannot exist two different trigonometric series converging 
to it everywhere in [—π, π]. But if one such series exists, ought it to be its Fourier 
series? 

This question, of course, only has meaning for summable f(x), since otherwise it 
would be simply impossible to write down the Fourier series (we always mean Fourier-
Lebesgue series). 

Let us note that the convergence of a trigonometric series at every point does not in 
any way imply that it is a Fourier series. Indeed, for example, the series 

L· Inn 
converges everywhere, since this is a sine series with monotonically decreasing co-
efficients (see § 30); however, it is not a Fourier series (see § 40). 

8 Bary I 
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Therefore it is appropriate to pose the question thus: Le t / (x ) be finite at every 
point and summable. Let there exist a trigonometric series converging to it everywhere 
in [— π, π\. Could this series be its Fourier series? 

Here we can give a positive answer to this question in the case when f{x) is a 
bounded function ; it was in this form that the theorem was proved by Lebesgue who 
generalized the initial result obtained by du Bois-Reymond.t But before proving this 
theorem, we should demonstrate the validity of the following lemma: 

LEMMA. If F(x) is continuous in [a, b] and 

m <D2F(x) <M in (<z,Z>), 

then for any x0 and h such that a < x0 — 2h < x0 + 2A < b, we have 

F(x0 + 2A) + F(x0 - 2A) - 2F(x0) 
m < ττ^ < M. 

4A2 

To prove this, we consider the auxiliary function 

+ 

4A 

(x - x0)2 F(x0 + 2A) + F(x0 - 2A) - 2F(x0) 
2 Ah2 

It is clear that Ψ(χ) is a polynomial of the second degree in x, whilst 

Ψ(χ0 + 2A) = F(xo + 2A), Ψ(χ0) = F(x0) and Ψ(χ0 - 2A) = F(x0 - 2A), 

i.e., the difference 
r(x) = F(x) - Ψ(χ) 

x0 and x0 + 2A. M 

F(x0 + 2A) + F(x0 - 2A) - 2F(x0) 

becomes zero at x = x0 — 2A, x0 and x0 + 2A. Moreover, r(x) is continuous in 
[a, b] and 

D2r(x) = D2F(x) -
4A2 

Since r(x) possesses a minimum and maximum somewhere inside (x0 — 2A, 
x0 + 2 A), let them be the points x^ and x2, and at them it is known that D2r(x1) > 0 
and D2r(x2) < 0, so it is immediately clear that 

n2rf . , F(x0 + 2A) + F(x0 - 2 A) - 2F(x0) 
D2F(x2) < ^ 2 < D2Hxi), 

which proves the validity of the lemma. 
We can now prove the theorem: 
THE DU BOIS-REYMOND-LEBESGUE THEOREM: Iff(x) is bounded in [—π, π] and there 

exists a trigonometric series 
a0 iE, 
— + Σ (an cosnx + bn sinnx), (72.1) 

^ n = l 

converging to it everywhere in this interval, then this series is its Fourier series. 

t du Bois-ReymondC2] considered only the case of bounded functions, integrable in the Riemann 
sense. 
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We will first note that from the convergence of series (72.1) it follows that an -> 0 
and bn -> 0 (see § 62). Therefore, it is possible to construct a Riemann function and 
to obtain, as in § 68 

F(x0 + 2A) + F(x0 - 2A) - 2F{x0) 

Ah 2 

a0 i2, / s in«A\ 2 

- y + L(ancos«xo + *nsin«x0) 1 ^ 1 . (72.2) 

From Riemann's theorem (see § 68, Theorem 1) we have at every point 

D2F(x)=f(x). (72.3) 

But/ (x) is given as bounded; which means that by the preceding lemma 

F(x + 2A) + F(x - 2A) - 2F(x) 

4A2 < M, (72.4) 

where M is a constant (and this is for any A and any x, —π < x < π) . We also note 
tha t / (x ) , as the sum of an everywhere convergent series of continuous functions, is 
measurable, which means that being measurable and bounded, it is summable. 

From the uniform convergence of (72.2) it follows that it is the Fourier series of the 
function on the left-hand side of the equality, i.e. 

/ sin«A \ 2 1 f F(x + 2A) + F(x - 2A) - 2F(x) 
a» \~nh~) » n J Aïe —™nxdx (72.5) 

—π 

and similarly 

, / s i n « h \ 2 1 FF(x + 2«) + F{x - 2h) - 2F(x) . 

^ΚΊΠΓ) =π) 4P Smnxdx- ( 7 2 · 6 ) 

— π 

But 

Fix + 2A) + F(x - 2A) - 2F(x) 
D2F(x) = lim 

h^O Ah2 

Therefore by virtue of (72.3) 

r F(x + 2A) + F(x - 2A) - 2F(x) 
lim JJ-2 = /(*). 

If we now note that due to (72.4) the expressions under the integral sign in the 
integrals (72.5) and (72.6) are bounded at any x and A by the same value M (this is 
true for any n)9 then it is possible to carry out the passage to the limit under the inte-

file:///~nh~
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gral sign, and therefore 
f sinnh\2 Iunnh\ 

an = l ima, (—7—I 

1 f F(x + 2/7) + F(x - 2A) - 2F(x) 
= lim— 77^ cosnxdx 

1 r 
= ~~ f(x) cosnx dx 

and similarly 
71 

1 r 
bn = — / ( x ) sinwx Î/Λ:, 

and this is what it was required to be proved. 
Note. We assumed/(x) to be bounded but the given theorem permits considerable 

generalization. It need not require convergence of the series at every point of [0, 2π] 
(see Chapter XIV, § 4). 

§ 73. Problems 

1. The series 
00 00 

J] cosnx and ]T cos2"x 
n=l «=1 

do not possess points of convergence, if the series 

00 

(a) £ sinnx 

converges only at Λ: = 0 (mod π), whilst the series 

00 

(b) £sin2";c 
«=1 

possesses an infinite (but denumerable) set of points of convergence in (0, π). 
The set of points of normal convergence of series (b) coincides with the set of 

points of its absolute convergence. <*, 
[In considering series (b), represent the points x in the form x = ny = π £ ôJ2k 

n = l 

where <5fc = 0 or 1. Consider the cases when y is a binary rational number and when y 
is not a binary rational number.] 

2. The set E c (— 00, +00) of all the points of convergence of the series 
00 

£ T I sin2n!x 
Λ = 1 
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has the power of the continuum in any interval (a, b) where a < b (although mJE = 0). 
This is also true for the series 

oo 

J^ncosl^x. 

[Consider the set of points E = Π En9 where En = { — oo < x < oo: |8Ϊη2"!χ 
Λ=10 

^ I/«3}·] 
3. If the trigonometric series 

a0 °° 
— + Σ (an cosnx + bn sinnx) (73.1) 

converges in measure in some set E where mE > 0, then 

Λ-»>00 

[Refer to the proof of the Cantor-Lebesgue theorem in § 62.] 
4. Consider a measurable function φ (χ) which is 2^periodic and not equal to a 

constant. Then for any an and λη where (λη) -* oo as « -> oo, the sequence of functions 
{φ(ληχ — α„)} diverges almost everywhere in (— oo, oo). 

5. If functions g(x) e C(0, 2π) and / (x ) € C(0, 2π) exist such that g(x) = f(x) for 
xe [1,2], the Fourier series of g(x) and / ( * ) are however not uniformly equi-
convergent in the interval (1, 2). 

6. The absolute convergence of trigonometric series is not a local property. There 
exists a 2:rc-periodic absolutely-continuous function/(x), the Fourier series of which 
is not absolutely convergent at any point # e [1, 2], although/(jc) = 0 for x e [1, 2]. 

7. There exists a trigonometric series of the the form (73.1) which diverges every-
where in (— oo, oo) and get this series is summable by the Abel-Poisson method for 
all x e ( — oo, oo). «, 

[Take the series £ n smnx and add to it a Fourier series (of a continuous function) 
« = i 

which diverges only at the points x = O (modrc).] 
8. Let an \ 0 and 

oo 

/ ( * ) = Σ an sinwx. (73.2) 

Then 
(a) if lim f(x) = 0, an = o(l/«) and the series (73.2) converges uniformly in [0, π]; 

(b) if lim fix) = A, where A is a finite number, αη = 0(1/ή) and 

£ . . ■ . „ f i f c = l , 2 . . . * (k = 1 2 
\Σαηύηηχ\ < Dfor all { x e [ 0 ^ j ' 

where D is a finite number. 
9. Let a„ j 0 

00 

and f (x) = Σαη cosnx. (73.3) 
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Then 
(a) if lim fix) = A, where A is a finite number, 

A = — - + Σ an 

and the series (73.3) converges absolutely in (— oo, oo); 

(b) if limf(x) = + oo, / (x) eL(0 , 2π) and the series (73.3) is a Fourier series; 

(c) if the function fix) is non-integrable in [0, π], then 

— oo = limf(x) < l im/(x) = + oo. 

10. (i) If a 2:7z-periodic function/(x) e Lipa, then 

(O ( I / O for 0 < a < 1 
l l / W - ^ , / ) ! ^ ^ ^ ) for a = u (73.4) 

where on{x,f) are the arithmetic means of the partial sums of theFourier series of the 
function/. The estimate (73.4) cannot be bettered. 

S.N.BERNSTEIN 

[The estimate (73.4) follows from the fact that (see § 47) 

7t 

1 

[ \f(x + i) + f{x - 0 - 2/(x)| Ä.(/) dt 
1 o II 

8 MI/(*+ *)+/ (*-0-2 / (*) | 
(" + 1) J *2 

1//ι 

If we take the function f0(x) e Lipa such that/0(x) = \x\a where |x | < 1, then we 
prove that the estimate (73.4) cannot be bettered with respect to order.] 

( i i ) If / (x)eC(0,27c) , then 

\\f(x) - σΛχ,/)\\ο = O l±-iEk(f)). 

S.B.STECHKIN 

11. Consider a 27Z-periodic function f{x) = ;csin(7z/;x;) where 0 < x < 1 and 
f(x) = 0 for 1 < x < In. Then 

ll/W - **{x,f)\\c = Oilj^n) 

and this estimate cannot be bettered with respect to order. 
[The modulus of continuity ω(<5,/) = 0(<51/2)anda>(<5,/) Φ o(<51/2). The fact that 

the estimate cannot be bettered follows from Stechkin's result[5] (see also § 7 of the 
Appendix).] 

12. For every a e (0, 1) there exists a function fe Lipa such that 

lim rf \fix) — (fnix,f) | > 0 for nearly all x e (— oo, -f oo). 

For a = 1, a statement of this type is not valid. 
A.I.RUBINSHTEIN 
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13. Consider a 27t-periodic function 

f(x\ = filq for χ = 2πΡΐ4 
\θ for the remaining x in [0, 2π], 

where 0 < p < q and pjq is an irreducible fraction. Then there does not exist a tri-
gonometric series which would converge everywhere to/(;*;). 

[Apply the du Bois-Reymond-Lebesgue Theorem of § 72.] 
14. Construct some measurable set E in (0, 2π) such that for any interval (<z, b) 

c (0, 2π) the measures m(a, b) E > 0 and m(a, b) CE > 0 where CE = [0, 2π] - E. 
15. Consider the j£-set of problem 14. Then, if 

/<*) = { 1 for x e E 
0 for xeCE 

there does not exist a trigonometric series which would converge to f(x) in some 
interval (a, b). 

[Assume the opposite and apply Baire's theorem concerning the limit of a sequence 
of continuous functions (see Lusin, A. 17, § 47).] 

16. There does not exist a denumerable system of functions/„(*) e C(0, 1) such 
that the set of all the functions 

F(x) s F{x; {ck}, N) = f ckfk(x) (N=l,2,...) 
k=\ 

(where ck are arbitrary real numbers) coincides with the whole space C(0, 1). 
[Assume the opposite and consider the function 

*(*)e.?iW.+ l)2- (*e[°'1])> 
where An = sup | / , (x) | and co(x9f) is the modulus of continuity of/.] 

*€[0,1] 

17. If 

]£ | afc cos \J27tk | < oo, 
&=i 

then 

Σ - Γ - < ο ο . 

A.A.MUROMSKII 

18. (i) If there exists a set E c [0, 1] with mE = 1 such that if 

oo 

£ \akcosnkx0\ < oo 

at some point x0 e E, then 
^ \ak\ 

£2 k(lnky+> < 0 ° 
for any ε > 0. 

(ii) Prove that the set E (of part (i)) can be chosen such that it contains all the al-
gebraic irrational points of the interval (0, 1). 

A.A.MUROMSKII 

file:///J27tk
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19. (i) If the series 
00 

Σ cn{\ — coswx) (73.5) 

converges at every point of an interval (<z, b), then the series 

fcn (73.6) 
n = l converges. 

G . H . H A R D Y (A. 8) 

( - 1 ) " 
(ii) If cn = -r— — , then the series (73.5) converges for all xe(0, π), 

although l n ( " + 1} 

oo 

Zk-r = » 
«=1 

for all real a > 0. 
20. If the series (73.5) converges absolutely at all the points of some set E with 

mE > 0, then the series (73.6) converges absolutely. 
[This statement is proved in the same way as the Lusin-Denjoy theorem of § 61.] 




