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Abstract

We survey some results about the thermodynamic formalism, especially the

extensions to subadditive potentials and weighted measure-theoretic entropies. As

an application, we review the mutifractal analysis for Lyapunov exponents with

respect to subadditive potentials.

1 Introduction

What is the thermodynamic formalism? In dynamic system and ergodic theory, it is a

topic that studies the relations between the measure-theoretic entropy and topological

pressure considering the Lyapunov exponents. For details about these classical dynamic

quantities, please refer to [16] .

We call (X,T ) a topological dynamical system (TDS) if X is a compact metric space

and T : X → X is a continuous transformation. Let C(X) be the space of continuous

functions on X. LetM(X) be the set of Borel probability measure andMT (X) ⊂M(X)

be the set of T -invariant measures. The classical thermodynamic formalism (CTF) reveals

the natural relations among the following quantities (see subsubsection 2.2.3).

• The measure-theoretic entropy h : MT (X)→ [0,∞].

• The Lyapunov exponent Φf : MT (X)→ (−∞,∞).

• The topological pressure P : C(X)→ (∞,+∞].

Assuming the finiteness of topological entropy and the upper semi-continuity of measure-

theoretic entropy, the CTF shows that

(−h)
∗−→ P

∗−→ (−h) (1.1)

where ∗ means taking the Legendre transform of a convex function (see subsection 2.2).

In particular, the equation P = (−h)∗ is called the variational principle. Under further

conditions, the CTF also gives some properties of the equilibrium states which constitutes{
µ ∈MT (X) :

∫
f dµ+ h(µ) = P (f)

}
.
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For a complete account of the classical thermodynamic formalism, please refer to [16].

Some historical progress is outlined in Appendix B.

Recent research aims to extend the above results to some general settings or give

conditions to assure the related results. The CTF hints at the good theorems, and to

some extent at their proofs. Motivated by the dimension theory in dynamic systems

and iterated function systems (IFS), there are two major directions for the extension:

subadditive thermodynamic formalism and weighted thermodynamic formalism.

What is the subadditive thermodynamic formalism? By generalizing the additive

potentials (in the definition of Lyapunov exponent and topological pressure) to the sub-

additive ones, we step into the study of subadditive thermodynamic formalism. Why it

matters? For instance, by Bowen’s equation [5] and Falconer’s result [7], the dimensions

of some conformal repellers and typical self-affine sets are the zeros of some topological

pressures defined by some non-additive potentials. Meanwhile, the local structure of some

self-similar measures with overlaps [12] can be expressed as products of matrices which

induces a subadditive potential.

What is the weighted thermodynamic formalism? It is about the investigation of a

formalism where the measure-theoretic entropy is defined with respect to a chain of fac-

tor maps instead of a single TDS. Why it matters? It is motivated by Kenyon-Peres’s

work [13] for the Hausdorff dimension of invariant sets under diagonal toral endomor-

phisms. The distinct scaling ratios along different directions lead us to consider a chain

of factor maps, thus the weighted thermodynamic formalism.

What is the multifractal analysis? Multifractal analysis studies the size of level sets of

some interesting pointwise quantity. In Section 4, the quantity is the pointwise Lyapunov

exponent (see (4.2)) and the level sets are measured by the topological entropy (see

(4.4)). The multifractal formalism usually aims to express the sizes of level sets as the

Legendre transform of another function. During the study, one important tool is the

thermodynamic formalism.

This article is organized as follows. In Section 2, we introduce some necessary defi-

nitions and briefly review the classical thermodynamic formalism. Based on [6, 9], some

results about subadditive thermodynamic formalism are given in Section 3. As an applica-

tion, we conduct the multifractal analysis for Lyapunov exponents in Section 4 according

to [10]. In Section 5, following [9, 11], we establish the weighted thermodynamic formal-

ism. For clearity and simplicity, the results are presented in symbolic dynamics. However,

many of them have natural extensions to topological dynamics. Finally, some questions

are raised in Section 6.

2 Preliminaries

2.1 Dynamic quantities

Let (X,T ) be a TDS in this subsection. We will define the measure-theoretic entropy,

Lyapunov exponents, and topological pressures. Some properties of them are given.

2



2.1.1 Measure-theoretic entropy

Let µ ∈MT (X). For a finite partition ξ of X, define the partition entropy

H (µ, ξ) :=
∑
A∈ξ

−µ(A) log µ(A)

and the dynamic partition entropy

h(µ, ξ) := lim
n→∞

1

n
H

(
µ,

n−1∨
i=0

T−iξ

)
= inf

n∈N

1

n
H

(
µ,

n−1∨
i=0

T−iξ

)
.

Then the measure-theoretic entropy h : MT (X)→ [0,∞] is

h(µ) := sup {h(µ, ξ) : ξ is a finite partition of X} (2.1)

Next we give some properties of µ 7→ h(µ).

Proposition 2.1. The map µ 7→ h(µ) is affine.

Proof. See e.g. [16, Theorem 8.1].

The following proposition shows the upper semi-continuity of dynamic partition en-

tropy under the Birkhoff limit.

Proposition 2.2. Let {ηn} ⊂ MT (X). Define µn := 1
n

∑n−1
i=0 T

iµn for n ∈ N. Let µ

be any w-∗ limit point of {µn}. Let ξ be a finite partition consisting of sets with µ-null

boundaries, that is, µ(∂A) = 0 for A ∈ ξ. Then

lim sup
n→∞

1

n
H

(
ηn,

n−1∨
i=0

T−iξ

)
≤ h(µ, ξ)

This is directly deduced from the next lemma due to Misiurewicz, see e.g., [16, The-

orem 9.10].

Lemma 2.3. Let µ ∈MT (X) and ξ be a finite partition. Let k ∈ N. Then for n ≥ 2k,

1

n
H

(
µ,

n−1∨
i=0

T−iξ

)
≤ 1

k
H

(
1

n

n−1∑
i=0

T iµ,

k−1∨
i=0

T−iξ

)
+O

(
#ξ

k

n

)
Proof. It is proved by the subadditiviy of the partition entropy and the next two combi-

natoric facts. For j = 0, . . . , k − 1, by Euclidean algorithm we have

n− j = qjk + rj

for some qj ≥ 1 and 0 ≤ rj < k. Then

{0, . . . , n− k} =
k−1⊔
j=0

{j + `k : ` = 0, . . . , qj − 1}

and for j = 0, . . . , k − 1,

{0, . . . , n− 1} =

qj−1⊔
`=0

{j + `k + i : i = 0, . . . , k − 1}
⊔
{0, . . . , j − 1, j + qjk, . . . , n− 1}.
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2.1.2 Lyapunov exponent

We say that a sequence Φ = {log φn} of functions on X is a subadditive potential if each

function φn : X → [0,∞) is a continuous function such that

φn+m(x) . φn(x)φm(T nx) for x ∈ X.

If φn(x) = exp(
∑n−1

i=0 f(T ix)) for some f ∈ C(X), then Φ is called additive. For conve-

nience, we denote the collection of all subadditive potentials on X by O(X).

The Lyapunov exponent Φ: MT (X)→ [−∞,∞) is

Φ(µ) := lim
n→∞

1

n

∫
log φn dµ for µ ∈MT (X) (2.2)

where the limit exists by the subadditivity. In particular, for f ∈ C(X), define Φf =

{exp(
∑n−1

i=0 f(T ix))}, then

Φf (µ) =

∫
f dµ. (2.3)

Next we give some properties of µ 7→ h(µ).

Proposition 2.4. The map µ 7→ Φ(µ) is affine.

The following proposition shows some upper semi-continuities of µ 7→ Φ(µ).

Proposition 2.5. Let Φ = {log φn} be a subadditive potential on X. Then

(i) The map µ 7→ Φ(µ) is upper semi-continuous in w-∗ topology.

(ii) Let {ηn} ⊂ MT (X). Define µn := 1
n

∑n−1
i=0 T

iµn for n ∈ N. Let µ be any w-∗ limit

point of {µn}. Then

lim sup
n→∞

1

n

∫
log φn dηn ≤ Φ(µ).

Proof. (i) follows directly from the subadditivity while (ii) results from Lemma 2.6.

Lemma 2.6. Let Φ = {log φn} be a subadditive potential on X. Let k ∈ N. Then for

n ≥ 3k,

1

n

n∑
i=1

log φi(x) ≤ 1

k

n−k∑
i=1

log φk(T
ix) +O

(
k

n

)
.

Proof. It is proved by the subadditivity of Φ and the combinatoric facts in the proof of

Lemma 2.3.
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2.1.3 Topological pressure

Let Φ = {log φn} be a subadditive potential on X. Denote the metric on X by d. For

n ∈ N, define

dn(x, y) := max
0≤i≤n−1

d(T ix, T iy) for x, y ∈ X.

Fix any discretization constant ε > 0. A subset E ⊂ X is called a (n, ε)-separated set if

dn(x, y) ≥ ε for distinct points x, y ∈ E. Define

P (Φ, ε, n) := sup

{∑
x∈E

φn(x) : E is a (n, ε)-separated set of X

}

and

P (Φ, ε) := lim sup
n→∞

1

n
logP (Φ, ε, n). (2.4)

The topological pressure P : O(X)→ [−∞,∞] is defined by

P (Φ) := lim
ε→0

P (Φ, ε).

In particular, for f ∈ C(X), define Φf = {exp(
∑n−1

i=0 f(T ix))} and P : C(X) → [∞,∞]

by

P (f) := P (Φf ). (2.5)

2.2 Legendre transform

Let X and X∗ be real locally convex topological vector spaces. Let 〈·, ·〉 : X ×X∗ → R
be a separately continuous bilinear function, that is, for x, x∗, the maps

〈·, x∗〉 : X → R, 〈x, ·〉 : X∗ → R

are continuous, and for x, y ∈ X, x∗, y∗ ∈ X∗, α ∈ R,

〈αx+ y, x∗〉 = α〈x, x∗〉+ 〈y, x∗〉, 〈x, αx∗ + y∗〉 = α〈x, x∗〉+ 〈x, y∗〉.

Let f : X → [−∞,∞] be a extended-real valued function. The convex conjugate of f is

f ∗ : X∗ → [−∞,∞] defined by

f ∗(x∗) := sup {〈x, x∗〉 − f ∗(x) : x ∈ X} for x∗ ∈ X∗. (2.6)

We call f a convex function if its epigraph

epi(f) := {(x, α) : x ∈ X,α ∈ R, α ≥ f(x)}

is a convex set in X⊕R. In particular, when f is real-valued, then f is a convex function

if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for x, y ∈ X,λ ∈ (0, 1).
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The effective domain of f is

dom(f) := {x ∈ X : f(x) <∞}.

A convex function f is said to be proper if dom(f) is not empty and contains no vertical

lines, i.e. if f(x) < ∞ for at least one x and f(x) > −∞ for all x. By convention, we

will view every real-valued convex function f on E ⊂ X as a convex function on X by

setting f =∞ on X \ E.

Definition 2.7 (Legendre transform). Let f be a proper convex function. The Legendre

transform of f is the convex conjugate f ∗ defined in (2.6).

A point x∗ ∈ X∗ is called a subgradient of a convex function f at x if

f(x+ h) ≥ 〈h, x∗〉+ f(x) for all h ∈ X.

The collection of all subgradients at x is called subdifferential at x and denoted by ∂f(x).

Let K ⊂ X be a convex set. We denote the extreme points of K by ex(K). The Krein-

Milman theorem implies that ex(K) 6= ∅ if K is non-empty and compact. For notational

simplicity, we write ∂ef(x) := ex(∂f(x)).

There are some usual examples of X and X∗.

• Let X = X∗ = Rd and 〈x, x∗〉 := x · x∗ be the standard inner product.

• Let K be a compact metric space. Let X := C(K) equipped with the sup norm.

Let X∗ := (C(K))∗ be the dual space of X consisting of Radon measures by Riesz

representation theorem. Endow X∗ with the w-∗ topology induced by X. Finally,

define

〈f, µ〉 :=

∫
f dµ for f ∈ X, µ ∈ X∗.

2.2.1 Basic example

Below is an example of Legendre transform by direct computation.

• Let f : R→ [−∞,∞] be

f(x) :=


x2 if x ∈ (−1, 1)

2 if x = ±1

∞ otherwise.

• The convex conjugate of f is f ∗ : R→ [−∞,∞] given by

f ∗(x∗) =


−x∗ − 1 if x∗ ≤ −2
(x∗)2

4
if x∗ ∈ (−2, 2)

x∗ − 1 if x∗ ≥ 2.
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• The double convex conjugate of f is f ∗∗ : R→ [−∞,∞] given by

f ∗∗(x∗∗)

{
(x∗∗)2 if x ∈ [−1, 1]

∞ otherwise.

x

f(x)

∞

x∗

f ∗(x∗)

x∗∗

f ∗∗(x∗∗)

∞

Figure 1: An example of convex conjugates

Notice that

f(x) = f ∗∗(x) if |x| 6= 1 and f(x) > f ∗∗(x) if |x| = 1.

Hence f = f ∗∗ fails at the discontinuities of f . This inspires us to assume the upper

semi-continuity µ 7→ h(µ) in the Fenchel-duality part of thermodynamic formalism, for

example (4.9).

2.2.2 Bernoulli thermodynamic formalism

In this example, we show the convex-conjugate relations in the following quantities. Let

∆d−1 ⊂ Rd denote the (d− 1)-dimensional simplex, that is,

∆d−1 := {(p1, . . . , pd) ∈ Rd :
d∑
i=1

pi = 1, pi ≥ 0}.

• The Shannon entropy H : ∆d−1 → [0, log d] is

H(p) :=
d∑
i=1

−pi log pi for p = (p1, . . . , pd) ∈ ∆d−1.

• Let a = (a1, . . . , ad) ∈ Rd. The linear function Φa : Rd → R is

Φa(p) := 〈a,p〉 =
d∑
i=1

piai for p = (p1, . . . , pd) ∈ Rd.

• The partition function Z : Rd → R is

Z(a) := log
d∑
i=1

exp(ai) for a = (a1, . . . , ad) ∈ Rd.
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Proposition 2.8 (Bernoulli thermodynamic formalism). In the above notation, we have

(−H)
∗−→ Z

∗−→ (−H).

This means

Z(a) = max
{
〈a,p〉+H(p) : p ∈ ∆d−1

}
for a ∈ Rd

and

−H(p) = max
{
〈a,p〉 − Z(a) : a ∈ Rd

}
for p ∈ ∆d−1.

Moreover, the maximizer for each equation above is unique.

Proposition 2.8 follows directly from the next lemma.

Lemma 2.9 (Generalized Gibbs inequality). Let a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Rn
≥0.

Then ∑
i

−ai log ai +
∑
i

ai log bi ≤ −(
∑
i

ai) log(
∑
i

ai) + (
∑
i

ai) log(
∑
i

bi)

where the equality holds if and only if a ‖ b, that is,

ai∑
j aj

=
bi∑
j bj

for i = 1, . . . , n.

Proof. It is a direct result of the strict convexity of x 7→ log x.

2.2.3 Classical thermodynamic formalism

Let (X,T ) be a TDS where the topological entropy is finite and the measure-theoretic

entropy is upper semi-continuous. The classical thermodynamic formalism reveals the

convex-conjugate relations between the following dynamic quantities.

• The measure-theoretic entropy h : Mσ(X)→ [0,∞) is defined in (2.1).

• The Lyapunov exponent with respect to f ∈ C(X) is Φf : M(X) → R defined in

(2.3).

• The topological pressure P : C(X)→ (∞,+∞] is defined in (2.5).

Then the negative measure-theoretic entropy and the topological pressure are convex

conjugates to each other.

Theorem 2.10 (Fenchel duality in CTF). Let (X,T ) be a TDS where the topological

entropy is finite and the measure-theoretic entropy is upper semi-continuous. Then

(−h)
∗−→ P

∗−→ (−h).

This means

P (f) = sup {〈f, µ〉+ h(µ) : µ ∈MT (X)} for f ∈ C(X)

and

h(µ) = inf {P (f)− 〈f, µ〉 : f ∈ C(X)} for µ ∈MT (X).
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Theorem 2.10 is the classical thermodynamic formalism without refering to the equi-

librium states (see [16]). On the other hand, as the main result in [4], the next theorem

gives a condition on the uniqueness of the equilibrium state. For the details, please refer

to [4].

Theorem 2.11 (Bowen’s unique equilibrium state). Let (X,T ) be a TDS. Suppose that

X satisfies specification and T is expansive. Then for f ∈ C(X) with bounded distorsion,

there is a unique equilibrium state such that∫
f dµ+ h(µ) = P (f).

The proof of Theorem 2.11 contains the an important criterion due to Parry [15] for

the absolute continuity between measures.

Lemma 2.12. Let (X,T ) be a TDS. Suppose that ξ is a strong generator of the Borel

σ-algebra on X. Let η, µ ∈M(X). If∑
A∈

∨n−1
i=0 T

−iξ

−η(A) log η(A) + η(A) log µ(A) ≥ O(1) (2.7)

for all n ∈ N, then η � µ.

Proof. It follows from the approximation of strong generators and Lemma 2.9.

2.3 Subshifts

Let A be a finite set called the alphabet. We endow AN with the canonical metric

d(x, y) := 2−|x∧y| for x, y ∈ AN

where x ∧ y denotes the common prefix of x, y and |I| = n for I ∈ An, n ∈ N. Then AN

is a compact metric space. The (left) shift map σ : AN → AN is defined by σ(x) := (xi+1)

for x = (xi) ∈ AN. The TDS (AN, σ) is called the (one-sided) fullshift over A.

Let X be a closed subset of AN such that σX ⊂ X. Then (X, σ) is a subshift, or

simply call X a subshift. For n ∈ N, define

Ln(X) := {I ∈ An : I = x1 . . . xn for some (xi)
∞
i=1 ∈ X}

and

L(X) :=
∞⋃
n=1

Ln(X)
⋃
{∅}

where ∅ denotes the empty word.
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3 Subadditive theormodynamic formalism

3.1 Subadditive variational principle

We begin with a relativized version of variational principle which will be used in Section 5.

Theorem 3.1 (Relativized variational principle). Let π : X → Y be an one-block factor

map between subshifts X, Y . Let Φ = {log φn} be a subadditive potential on X. Let

ν ∈Mσ(Y ). Then

max {Φ(µ) + h(µ) : µ ∈Mσ(X), πµ = ν} = Ψ(ν) + h(ν) (3.1)

where Ψ = {logψn} is a subadditive potential on Y defined by

ψn(y) =
∑

I∈Ln(X) : π(I)=y|n

sup
x∈I

φn(x) for y ∈ Y and n ∈ N.

Proof. The upper bound in (3.1) follows from Lemma 2.9 directly. On the other hand,

by Gibbs construction we can obtain an invariant measure µ with Φ(µ) + h(µ) maximal.

Specifically, Lemma 2.9 hints a sequence of discrete measures ηn such that H(ηn,Ln(X))+∫
log φn dηn maximal in the fiber π−1

(
ν|Ln(X)

)
. Then the Birkhoff limit of {ηn} gives an

invariant measure µ with πµ = ν. Finally Proposition 2.5 and Proposition 2.2 assure

that Φ(µ) + h(µ) is maximal.

When Y = {0}, Theorem 3.1 implies the subadditive variational principle.

Theorem 3.2 (Subadditive variational principle). Let X be a subshift and Φ = {log φn}
be a subadditive potential. Then

max {Φ(µ) + h(µ) : µ ∈Mσ(X)} = P (Φ)

where

P (Φ) = lim
n→∞

1

n
log

∑
I∈Ln(X)

sup
x∈I

φn(x).

The subadditive variational principle is established for general TDS in [6, Theorem

1.1].

3.2 Unique subadditive equilibrium state

Definition 3.3 (Weak specification). Let X be a subshift. We say that X satisfies weak

specification if there exists p ∈ N such that for every I, J ∈ L(X), there exists W ∈ L(X)

with |W | ≤ p so that IWJ ∈ L(X).

Let X be a subshift over a finite alphabet A. Let φ : L(X)→ [0,∞) be a function such

that φ(IJ) . φ(I)φ(J) for I, J ∈ L(X). There is a subadditive potential Φ = {log φn}
induced from φ where

φn(x) := φ(x|n) for n ∈ N.

We use Θ(X) to denote the collection of functions φ : L(X)→ [0,∞) such that
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(1) There exists W ∈ L(X) \ {∅} such that φ(W ) > 0.

(2) φ(IJ) . φ(I)φ(J) for all IJ ∈ L(X).

(3) There exists p ∈ N such that for any I, J ∈ L(X), there is K ∈ L(X) with |W | ≤ p

such that IWJ ∈ L(X) and φ(IWJ) & φ(I)φ(J).

Note that the constant function φ ≡ 1 belongs to Θ(X) if X satisfies weak specification.

Theorem 3.4 (Unique subadditive equilibrium state). Let X be a subshift satisfying

weak specification. Let φ ∈ Θ(X) and Φ = {log φn} be the subadditive potential induced

from φ. Then there is a unique equilibrium state µ of Φ, that is,

Φ(µ) + h(µ) = P (Φ).

Moreover, µ is ergodic and satisfies

µ(I) ≈ φ(I)∑
J∈Ln(X) φ(J)

≈ φ(I)

exp(nP (Φ))
for I ∈ Ln(X)

and ∑
I∈Ln(X)

−µ(I) log µ(I) = nh(µ) +O(1),
∑

I∈Ln(X)

−µ(I) log φ(I) = nΦ(µ) +O(1)

The proof of Theorem 3.4 relies on Proposition 3.5 about a lower Gibbs property

of some limit measure in the Gibbs construction. Let Ω(X) denote the collection of

functions φ : L(X)→ [0,∞) such that

(1)
∑

I∈Ln(X) φ(I) = 1 for n ∈ N.

(2) For I ∈ L(X), there exist i, j ∈ A such that φ(Ii) & φ(I) and φ(jI) & φ(I).

(3) There exists p ∈ N such that for any I, J ∈ L(X), there is W ∈ L(X) with |W | ≤ p

such that IWJ ∈ L(X) and φ(IWJ) & φ(I)φ(J).

The next proposition is a result of weak specification.

Proposition 3.5. Let X be a subshift satisfying weak specification and φ ∈ Ω(X). Fix

any xI ∈ I for I ∈ L(X). For n ∈ N, define

ηn :=
∑

I∈Ln(X)

δxIφ(I)

and

µn :=
1

n

n−1∑
i=0

σiηn.

Then µn
w-∗−−→ µ as n→∞ for some µ ∈Mσ(X). Moreover, µ is ergodic and

µ(I) ≈ φ∗(I) & φ(I) for I ∈ L(X)
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where

φ∗(I) := sup
m,n≥0

φm,n(I)

and for m,n ≥ 0,

φm,n(I) :=
∑

I1∈Lm(X),I2∈Ln(X) : I1II2∈L(X)

φ(I1II2).

Proof. By weak specification, we can show firstly for I ∈ L(X),

φ∗(I) ≈ φm,n(I)

for m,n large, and secondly for I, J ∈ L(X),

lim inf
n→∞

p∑
k=0

∑
W∈Ln+k(X)

φ(IWJ) & φ(I)φ(J).

The proof is completed by the above facts.

Proof of Theorem 3.4. Since φ ∈ Θ(X), it is proved that Zm+n ≈ ZmZn for m,n ∈ N
where Zk :=

∑
I∈Lk(X) φ(I). By normalizing with Zn, we have φ̃ ∈ Θ(X) where

φ̃(I) :=
φ(I)

Z|I|
≈ φ(I)

exp(nP (Φ))
for I ∈ L(X).

Let I ∈ Ln(X). The subadditvity of φ̃ implies φ̃∗(I) ≈ φ̃(I). Therefore, Proposition 3.5

gives an ergodic measure µ such that

µ(I) ≈ φ̃∗(I) ≈ φ̃(I) ≈ φ(I)

exp(nP (Φ))
. (3.2)

Let η be any equilibrium state provided by Theorem 3.2. Then

Φ(µ) + h(µ) = P (Φ). (3.3)

Hence

0 ≥
∑

I∈Ln(X)

−η(I) log η(I) + η(I) log µ(I)

≥
∑

I∈Ln(X)

(
− η(I) log η(I) + η(I) log φ(I)

)
− nP (Φ) +O(1) by (3.2)

≥ nh(η) + nΦ(η)− nP (Φ) +O(1) by subadditivity

= O(1) by (3.3).

This shows η � µ by Lemma 2.12. Thus η = µ since µ is ergodic.
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4 Multifractal analysis for Lyapunov exponents

Let X be a subshift. Let Φ = {log φn} be a subadditive potential on X. Define

Φ := lim
n→∞

1

n
log sup

x∈X
φn(x) ∈ [−∞,∞)

where the limit exists by the subadditivity of Φ. To avoid triviality, we assume Φ > −∞.

In this section, we will study the following quantities.

• The measure-theoretic entropy h : Mσ(X)→ [0,∞) is defined in (2.1).

• The Lyapunov exponent Φ: Dom(Φ)→ [−∞,∞) is defined by

Φ(µ) := lim
n→∞

1

n

∫
log φn dµ (4.1)

where

Dom(Φ) =

{
µ ∈M(X) : lim

n→∞

1

n

∫
log φn dµ exists

}
.

The subadditivity of Φ implies that Mσ(X) ⊂ Dom(Φ). For x ∈ X, let δx denote

the Dirac measure at x. For x ∈ X with δx ∈ Dom(Φ), define

Φ(x) := Φ(δx). (4.2)

• The topological pressure P : O(X)→ [−∞,+∞) is simplified to

P (Φ) := lim
n→∞

1

n
log

∑
I∈Ln(X)

sup
x∈I

φn(x)

where the limit exists by the subadditivity and O(X) denotes the collection all

subadditive potentials on X.

By (4.2), we can view Φ as a point function. There is a multifractal decomposition of

X by

X = (X \Dom(Φ))
⊔ ⊔

α∈[−∞,∞]

E(α) (4.3)

where E(α) denotes the level set, that is,

E(α) := {x ∈ X : Φ(x) = α} for α ∈ [−∞,∞].

To obtain a mutifractal spectrum for X, we need a set function to measure the size

of level sets. Below we introduce the (Bowen’s) topological entropy h : 2X → [0,∞). Let

E ⊂ X. For s ≥ 0 and n ∈ N, define

Ms
n(E) := inf

{∑
i

exp(−sni) : cylinders {Ii} covers E with ni = |Ii| ≥ n

}

13



and

Ms(E) := lim
n→∞

Ms
n(E).

Then the topological entropy of E is

h(E) := inf{s ≥ 0: Ms(E) = 0} = inf{s ≥ 0: Ms(E) <∞}
= sup{s ≥ 0: Ms(E) > 0} = sup{s ≥ 0: Ms(E) =∞}.

(4.4)

Following [2], we can define the topological entropy multifractal spectrum for the Lya-

punov exponents F : [−∞,∞]→ [0,∞) by

F(α) := h(E(α)) for α ∈ [−∞,∞]. (4.5)

Here are some natural questions.

Q1: Does multifractal formalism hold for F? Equivalently, can F expressed as the

Legendre transform of another function?

Q2: Is there a variational principle between the topological entropy h(E(α)) and measure-

theoretic entropy h(µ) with µ(E(α)) = 1?

Before answering the above questions, we make some simplifications. Instead of doing

convex analysis for P : O(X) → R directly on the O(X), we tend to analyze convexity

along the one-parameter family of subadditive potentials {qΦ}q>0. Define the reduced

topological pressure function P : (0,∞)→ R by

P (q) := P (qΦ) for q > 0. (4.6)

What is the convex conjugate of q 7→ P (q)? A candidate can be found by Theorem 3.2,

P (q) = P (qΦ)

= sup
µ∈Mσ(X)

{qΦ(µ) + h(µ)}

= sup
α∈Ω

sup
Φ(µ)=α

{qΦ(µ) + h(µ)}

= sup
α∈Ω

{
αq + sup

Φ(µ)=α

{h(µ)}

}
where Ω = Φ(Mσ(X)). This leads us to define the reduced measure-theoretic entropy

function h : Ω→ R by

h(α) := {h(µ) : µ ∈Mσ(X) with Φ(µ) = α} for α ∈ Ω. (4.7)

With the above simplifications, it is easy to formulate some conjectures about the

answers to the above questions. Fortunately the conjectures are proved in [10].

Theorem 4.1 (Mulifractal formalism for Lyapunov exponents). Let X be a subshift and

Φ be a subadditive potential on X. The function q 7→ P (q) := P (qΦ) is continuous and

convex on (0,∞). Moreover,

14



(i) Let α ∈ ∂eP (q) for some q > 0. Then E(α) 6= ∅ and

h(E(α)) = inf
t>0
{P (t)− αt}. (4.8)

(ii) Let α ∈ (P ′(0), P ′(∞)). Then

h(α) = inf
t>0
{P (t)− αt} (4.9)

where h(α) is defined in (4.7).

Theorem 4.1 is a combination of Theorem 4.4 and Theorem 4.5. Note that the right

hands of (4.8) and (4.9) are the negation of the Legendre transform of P : (0,∞) → R.

There is an immediate corollary.

Corollary 4.2. Let X be a subshift and Φ be a subadditive potential on X. Let q > 0.

If I(q) = {µq}, then µq is ergodic. Moreover, P ′(q) = Φ(µq) and

h(E(P ′(q))) = inf
t>0
{P (t)− P ′(q)t} = h(P ′(q)) = P (q)− P ′(q)q.

A combination of Theorem 3.4 and Corollary 4.2 gives the following theorem.

Theorem 4.3. Let X be a subshift satisfying weak specification. Let φ ∈ Θ(X) and Φ =

{log φn} be the subadditive potential induced from φ. Then the map q 7→ P (q) := P (qΦ)

is a convex differentiable function on (0,∞). Moreover, for q > 0, P ′(q) = Φ(µq) where

µq is the unique equilibrium state of qΦ, and

h(E(P ′(q))) = h(P ′(q)) = inf
t>0
{P (t)− P ′(q)t} = P (q)− P ′(q)q.

4.1 Upper bound

Theorem 4.4. Let X be a subshift and Φ be a subadditive potential on X. Then the

map q 7→ P (q) := P (qΦ) is a convex continuous function on (0,∞). Moreover, for

α ∈ (P ′(0), P ′(∞)).

(i) h(E(α)) ≤ inft>0{P (t)− αt}.

(ii) h(α) ≤ inft>0{P (t)− αt}.

Proof. First we show (i). Let n ∈ N and ε > 0. Define

G(α, n, ε) :=

{
x ∈ X : ∀ k ≥ n,

1

k
log φk(x) ∈ (α− ε, α + ε)

}
. (4.10)

Write F = G(α, n, ε) for convenience. For k ∈ N, denote

Lk(F ) := {I ∈ Lk(X) : I ∩F 6= ∅} .

Then there exists some xI ∈ I ∩F for each I ∈ Lk(F ).

15



Let s > P (q). It follows from the definition of P (q) that for all large k,

ks > log
∑

I∈Lk(X)

sup
x∈I

φqk(x)

≥ log
∑

I∈Lk(F )

φqk(xI)

≥ log #Lk(F ) +
∑

I∈Lk(F )

1

#Lk(F )
log φqk(xI) by Lemma 2.9

≥ log #Lk(F ) + k(α− ε)q by (4.10).

Hence k[s− (α− ε)q] ≥ log #Lk(F ). Since Lk(F ) is a cover of F with cylinders of length

k,

Ms−(α−ε)q
k (F ) ≤ #Lk(F ) exp (−k[s− (α− ε)q]) ≤ #Lk(F ) exp(− log #Lk(F )) = 1.

This implies the topological entropy

h(G(α, n, ε)) ≤ s− (α− ε)q.

Since the topological entropy is monotone and σ-stable,

h(E(α)) ≤ h

(
∞⋃
n=1

G(α, n, ε)

)
= sup

n
h (G(α, n, ε)) ≤ s− (α− ε)q.

Letting ε→ 0 finishes the proof.

Next we move to (ii). Let t > 0. By Theorem 3.2,

h(α) = sup {h(µ) : µ ∈Mσ(X), Φ(µ) = α}
≤ sup {P (t)− tΦ(µ) : µ ∈Mσ(X), Φ(µ) = α}
= P (t)− αt.

Taking infimum with respect to t > 0 completes the proof. This is rather direct in the

sense that Fenchel’s inequality always holds.

4.2 Lower bound

Theorem 4.5. Let (X, σ) be a subshift and Φ be a subadditive potential on X. Then

(i) Let α ∈ ∂eP (q) for some q > 0. Then E(α) 6= ∅ and h(E(α)) ≥ inft>0{P (t)− αt}.

(ii) Let α ∈ (P ′(0), P ′(∞)). Then h(α) ≥ inft>0{P (t)− αt}.

Theorem 4.5 relies on the next two lemmas.

Lemma 4.6. For q > 0 and α ∈ Ω, the subset of equilibrium states with prescribed

Lyapunov exponent

I(q, α) := {µ ∈ I(q) : Φ(µ) = α}
is compact convex if it is nonempty. Moreover, if α ∈ ∂eP (q), then I(q, α) 6= ∅ and

ex(I(q, α)) ⊂ ex(Mσ(X)).

16



Proof. The convexity follows from the affinity of Φ. To justify the compactness, it suf-

fices to prove the closedness. Let µ be a closure point of I(q, α) in w-∗ topology. By

metrizability, there exists (µn) ∈ I(q, α) such that µn
w−∗−−→ µ as n → ∞. The upper

semi-continuity of ν 7→ h(ν) and ν 7→ Φ(ν) implies

P (q) ≥ qΦ(µ) + h(µ) ≥ lim
n→∞

(qΦ(µn) + h(µn)) = αq + lim
n→∞

h(µn) = P (q)

which forces that Φ(µ) = α and h(µ) = P (q)− αq. Hence µ ∈ I(q, α).

Let α ∈ ∂eP (q). Then I(q, α) 6= ∅ since ∂P (q) = Φ(I(q)). By Krein-Milman theorem,

there exists some µ ∈ ex(I(q, α)). Suppose

µ = λµ1 + (1− λ)µ2

for some µ1, µ2 ∈ Mσ(X) and λ ∈ (0, 1). By the linearity and extremality, we have

µ1, µ2 ∈ I(q). Then Φ(µ1),Φ(µ2) ∈ Φ(I(q)) = ∂P (q). Since α = λΦ(µ1) + (1− λ)Φ(µ2)

and α is an extreme point, we have

Φ(µ1) = Φ(µ2) = α.

Hence µ1, µ2 ∈ I(q, α). Since µ ∈ ex(I(q, α)), we have

µ1 = µ2 = µ.

This shows µ ∈ ex(Mσ(X)).

Lemma 4.7. Let α ∈ ∂P (q) for some q > 0. Then for ε > 0, there exists µ ∈ Mσ(X)

such that

|Φ(µ)− α| < ε and |h(µ)− (P (q)− αq)| < ε.

Proof. We prove in three steps according to different assumptions on α.

Suppose α = P ′(q) for some q > 0. Then

P (q + t)− P (q) = αt+ o(|t|). (4.11)

By Theorem 3.2, there exists an ergodic measure µ such that

P (q) = h(µ) + qΦ(µ) and P (q + t) ≥ h(µ) + (q + t)Φ(µ). (4.12)

Hence P (q + t)− P (q) ≥ tΦ(µ). By (4.11),

αt+ o(|t|) ≥ tΦ(µ).

Diving by small t with t > 0 and t < 0 gives

Φ(µ) = α.

This shows h(µ) = P (q)− αq by (4.12).
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Suppose α ∈ ∂eP (q). Let ε > 0. By the denseness of the differentiable points of

convex function q 7→ P (q), there exists t > 0 such that

|P ′(t)− α| ≤ ε, |t− q| ≤ ε, |P (t)− P (q)| ≤ ε.

By the previous step, there exists an ergodic measure µ such that

Φ(µ) = P
′
(t) and h(µ) = P (t)− P ′(t)t.

Together, we have

|Φ(µ)− α| < ε and |h(µ)− (P (q)− αq)| < ε.

Suppose α ∈ ∂P (q) = [α1, α2]. Then

α = λα1 + (1− λ)α2

for some λ ∈ [0, 1]. By the previous step, for i = 1, 2, there exists an ergodic measure µi
such that

|Φ(µi)− αi| < ε and |h(µi)− (P (q)− αiq)| < ε.

Set µ := λµi + (1 − λ)µi−1 ∈ Mσ(X). Then the affinity of µ 7→ Φ(µ) and µ 7→ h(µ)

implies

|Φ(µ)− α| < ε and |h(µ)− (P (q)− αq)| < ε.

This finishes the proof.

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. We first show (i). By Lemma 4.6, there exists an ergodic measure

µ such that

P (q) = qΦ(µ) + h(q) and Φ(µ) = α.

By Kingman’s ergodic theorem, µ(E(α)) = 1, thus E(α) = ∅. Hence

h(E(α)) ≥ h(µ) = P (q)− αq = inf
t>0
{P (t)− αt}

where the first inequality is a special case of Theorem 5.2.

Next we move to (ii). By Lemma 4.7, there exist a sequence of measures (µn) ∈
Mσ(X) such that

lim
n→∞

P (µn) = α and lim suph(µn) ≥ inf
t>0
{P (t)− αt}.

By passing to a subsequence, we have µn
w−∗−−→ µ for some µ ∈ Mσ(X). The upper

semi-continuity of µ 7→ h(µ) and µ 7→ Φ(µ) implies

Φ(µ) ≥ α and h(µ) ≥ inf
t>0
{P (t)− αt} = P (q)− αq.

Hence by Theorem 3.2,

h(µ) ≥ P (q)− αq ≥ P (q)− Φ(µ)q ≥ h(µ),
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which implies

Φ(µ) = α and h(µ) = P (q)− αq.

Thus

h(α) ≥ h(µ) = inf
t>0
{P (t)− αt}.

This finishes the proof.

5 Weighted thermodynamic formalism

Let π : X → Y be a factor map between subshifts X, Y . Without loss of generality, we

can assume that π is an one-block map. In this section, we will study a thermodynamic

formalism with respect to the following diagram.

X X

Y Y

σX

π π

σY

Let a = (a1, a2) ∈ R2 such that a1 + a2 = 1, a1 > 0 and a2 ≥ 0. Below we introduce

the dynamic quantities.

• The a-weighted measure-theoretic ha : Mσ(X)→ [0,∞) is

ha(µ) := a1h(µ) + a2h(πµ) for µ ∈Mσ(X),

where h denotes the classical measure-theoretic entropy in (2.1).

• Let Φ = {log φn} be a subadditive potential on X. The Lyapunov exponent

Φ: Mσ(X)→ [−∞,∞) is

Φ(µ) := lim
n→∞

1

n

∫
log φn dµ for µ ∈Mσ(X).

• For I ∈ Ln(X), define the corresponding a-weighted cylinder as

Ia :=

{
x ∈ X : x` = I` for 1 ≤ ` ≤ a1n; π(x`) = π(I`) for 1 ≤ ` ≤ n

}
.

Let Φ = {log φn} be a subadditive potential on X. Let E ⊂ X. For s ≥ 0 and

n ∈ N, define

Ma,s(Φ, E, n) := inf

{∑
i

exp
(
− sni+

1

a1

sup
x∈Iai

log φa1ni(x)
)

:

{Iai } covers E with ni = |Ii| ≥ n

}
and

Ma,s(Φ, E) := lim
n→∞

Ma,s(Φ, E, n).
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Then the (a,Φ)-weighted topological pressure P a(Φ, ·) : 2X → [−∞,∞) is

P a(Φ, E) := inf{s ≥ 0: Ma,s(Φ, E) = 0} = inf{s ≥ 0: Ma,s(Φ, E) <∞}
= sup{s ≥ 0: Ma,s(Φ, E) > 0} = sup{s ≥ 0: Ma,s(Φ, E) =∞}.

The a-weighted topological pressure P a : O(X)→ [−∞,∞) is

P a(Φ) := P a(Φ, X).

For a = (a1, a2) with a1 > 0, a2 ≥ 0, by convention we write ã = a/‖a‖1 and define

ha(µ) := ‖a‖1h
ã(µ), P a(Φ) := ‖a‖1P

ã

(
Φ

‖a‖1

)
.

5.1 Weighted variational principle

Theorem 5.1 (Weighted variational principle). Let a = (a1, a2), a1 > 0, a2 ≥ 0 and

Φ = {log φn} be a subadditive potential on X. Then

max {Φ(µ) + ha(µ) : µ ∈Mσ(X)} = P a(Φ).

Theorem 5.1 is a combination of Theorem 5.2 and Theorem 5.3.

5.1.1 Lower bound

Theorem 5.2. Let a = (a1, a2), a1 > 0, a2 ≥ 0 and Φ = {log φn} be a subadditive

potential on X. Then for µ ∈Mσ(X),

P a(Φ) ≥ Φ(µ) + ha(µ).

Theorem 5.2 will be proved following a dynamic mass distribution principle.

Proof. Without loss of generality, we assume a1 + a2 = 1. First we suppose that µ is

ergodic. Then πµ is also ergodic. Write h1 = h(µ) and h2 = h(πµ). Let β < Φ(µ).

By Shannon-McMillan-Breiman theorem and Kingman’s ergodic theorem, there exists

E ⊂ X with µ(E) close to 1 and N ∈ N such that for n ≥ N and x ∈ E,

µ(x|n) = exp(−n(h1 + o(1)), (πµ)(π(x)|n) = exp(−n(h2 + o(1))), log φn(x) > nβ. (5.1)

Then for n large and I ∈ Ln(X),

#{J ∈ Ln(X) : π(J) = π(I), J ∩E 6= ∅} = exp(n(h1 − h2 + o(1))).

Thus for I ∈ Ln(X),

µ(Ia ∩E) =
∑

J∈Ln(X) : I|a1n=J |a1n,π(I)=π(J),J ∩E 6=∅

µ(J)

≤ exp(−nh1)#{J ∈ L(1−a1)n(X) : π(J) = π(In(1−a1)n), J ∩E 6= ∅}
= exp (n(−h1 + (1− a1)(h1 − h2) + o(1)))

= exp (−n(a1h1 + a2h2 + o(1)))

= exp (−n(ha(µ) + o(1)))

(5.2)
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Let α < ha(µ). Write δ := ha(µ) − α > 0. Let {Iai } be a cover of E with |Ii| ≥ n. We

can assume xi ∈ Iai ∩E. By taking o(1) < δ/2, we have∑
i

exp
(
− ni(α + β) +

1

a1

sup
x∈Iai

log φa1ni(x)
)

≥
∑
i

exp
(
− ni(ha(µ)− δ + β) +

1

a1

log φa1ni(xi)
)

≥ exp(nδ/2)
∑
i

exp
(
− ni(ha(µ) + o(1))

)
by (5.1)

≥ exp(nδ/2)
∑
i

µ(Iai ∩E) by (5.2)

≥ µ(E).

Taking infimum with respect to the a-weighted coverings of E and letting n→∞ shows

Ma,α+β(Φ, X) ≥Ma,α+β(Φ, E) ≥ µ(E) ≥ 1

2
> 0.

Hence

P a(Φ) = P a(Φ, X) ≥ α + β.

Letting α→ ha(µ) and β → Φ(µ) gives

P a(Φ) ≥ Φ(µ) + ha(µ). (5.3)

Let ν ∈ Mσ(X). The ergodic decomposition gives a probability P on ex(Mσ(X))

such that

ν =

∫
µ dP(µ).

By (5.3), the affinities of µ 7→ Φ(µ) and µ 7→ ha(µ) implies that

Φ(ν) + ha(ν) =

∫
Φ(µ) + ha(µ) dP(µ) ≤ P a(Φ).

This completes the proof.

5.1.2 Upper bound

Theorem 5.3. Let a = (a1, a2), a1 > 0, a2 ≥ 0 and Φ = {log φn} be a subadditive

potential on X. Then

P a(Φ) ≤ sup {Φ(µ) + ha(µ) : µ ∈Mσ(X)}

Inspired by the classical results about the Hausdorff dimensions of sets and measures,

it is natural to ask for a dynamic Frostman lemma. This is the key part in the proof of

the upper bound in [11, Theorem 1.4], see [11, Section 5] for details. However, for the

symbolic dynamics, we have a direct proof which begins with the Legendre transform of

µ 7→ ha(µ).
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Theorem 5.4. Let a = (a1, a2) with a1 > 0, a2 ≥ 0 and Φ = {log φn} be a subadditive

potential on X. Then

sup{Φ(µ) + ha(µ) : µ ∈Mσ(X)} = ‖a‖1P (Ψ)

where Ψ = {logψn} is the subadditive potential on Y defined by

ψn(y) =

 ∑
I∈Ln(X) : π(I)=y|n

sup
x∈I

φ1/a1
n (x)

a1/(a1+a2)

for y ∈ Y, n ∈ N.

Proof. Without loss of generality, we assume a1 + a2 = 1. The proof is completed by the

following optimization process.

sup
µ∈Mσ(X)

{Φ(µ) + ha(µ)}

= sup
ν∈Mσ(Y )

sup
πµ=ν
{Φ(µ) + a1h(µ) + a2h(ν)}

= sup
ν∈Mσ(Y )

{
a1 sup

πµ=ν

{
1

a1

Φ(µ) + h(µ)− h(ν)

}
+ h(ν)

}
= sup

ν∈Mσ(Y )

{Ψ(ν) + h(ν)} by Theorem 3.1

= P (Ψ) by Theorem 3.2.

Theorem 5.3 follows from a combination of Theorem 5.4 and the next proposition.

Proposition 5.5. Let a = (a1, a2) with a1 > 0, a2 ≥ 0 and Φ = {log φn} be a subadditive

potential on X. Let Ψ be the potential given in Theorem 5.4. Then

P a(Φ) ≤ ‖a‖1P (Ψ).

Proof. Without loss of generality, we assume a1 + a2 = 1. Let s > P (Ψ). Then for n

large,

log

 ∑
J∈La1n(Y )

( ∑
I∈π−1J

sup
x∈I

φ1/a1
a1n

(x)

)a1
 < sn. (5.4)

For n ∈ N, define

Γn(X) := {Ia : I ∈ Ln(X)} .

Then Γn is a cover of X with a-weighted cylinders of length n. Since [Ia] ⊂ [I|a1n],

sup
x∈Ia

φa1n(x) ≤ sup
x∈I|a1n

φa1n(x).

Hence∑
Ia∈Γn(X)

exp

(
1

a1

sup
x∈Ia

log φa1n(x)

)
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≤
∑

Ia∈Γn(X)

sup
x∈I|a1n

φ1/a1
a1n

(x)

=
∑

I∈La1n(X)

sup
x∈I

φ1/a1
a1n

(x)

=
∑

J∈La1n(Y )

∑
I∈π−1(J)

sup
x∈I

φ1/a1
a1n

(x)

= exp

 1

a1

log

 ∑
J∈La1n(Y )

∑
I∈π−1(J)

sup
x∈I

φ1/a1
a1n

(x)

a1
≤ exp

 1

a1

log

 ∑
J∈La1n(Y )

 ∑
I∈π−1(J)

sup
x∈I

φ1/a1
a1n

(x)

a1 by subadditivity of x 7→ xa1

. exp(sn) by (5.4).

This implies

Ma,s(Φ, X, n) ≤ exp(−sn)
∑

Ia∈Γn(X)

exp

(
1

a1

sup
x∈Ia

log φa1n(x)

)
. 1.

Letting n→∞ gives Ma,s(Φ, X) . 1. Thus

P a(Φ) ≤ s.

Letting s→ P (Ψ) gives P a(Φ) ≤ P (Ψ).

5.2 Unique weighted equilibrium state

Recall the definitions of weak specification, Θ(X) and Ω(X) from subsection 3.2.

Theorem 5.6 (Unique weighted equilibrium state). Let π : X → Y be an one-block factor

map between subshifts X, Y . Suppose X satisfies weak specification. Let φ ∈ Θ(X) and

Φ = {log φn} be the subadditive potential induced from φ. Let a = (a1, a2), a1 > 0, a2 ≥ 0.

Then there is a unique a-weighted equilibrium state µ, that is,

Φ(µ) + ha(µ) = P a(Φ).

Moreover, µ is ergodic and for I ∈ L(X),

µ(I) & φ̃(I)

where

φ̃(I) :=
φ(I)1/a1

ψ(π(I))(a1+a2)/a1

ψ(π(I))

Z|I|

in which,

ψ(J) :=

 ∑
π(I)=J

φ1/a1(I)

a1/(a1+a2)

for J ∈ L(Y )

and

Zn :=
∑

J∈Ln(Y )

ψ(J) for n ∈ N.

23



Proof. Without loss of generality we assume a1 + a2 = 1. Define

f(I) := ψ(π(I))a2/a1Z|I| for I ∈ L(X).

Since ψ ◦ π is subadditive and Zn ≈ exp(nP (Ψ)), it is readily checked that

φ̃ =
φ1/a1

f
∈ Ω(X).

By Proposition 3.5, there is an ergodic measure µ such that

µ(I) & φ̃(I) ≈ φ(I)1/a1

ψ(π(I))1/a1−1 exp(nP (Ψ))
for I ∈ L(X). (5.5)

Let η be any a-weighted equilibrium state provided by Theorem 5.4. Using Theo-

rem 3.1 and Theorem 3.4, we conclude from the proof of Theorem 5.4 that

πη = ν (5.6)

and
1

a1

Φ(η) + h(η) =
1

a1

Ψ(ν) + h(ν) (5.7)

where ν satisfies

Ψ(ν) + h(ν) = P (Ψ) (5.8)

and∑
I∈Ln(Y )

−ν(J) log ν(J) = nh(ν) +O(1),
∑

J∈Ln(Y )

−ν(J) logψ(J) = nΨ(ν) +O(1). (5.9)

Finally,∑
I∈Ln(X)

−η(I) log η(I) + η(I) log µ(I)

≥
∑

I∈Ln(X)

−η(I) log η(I) + η(I) log
φ(I)1/a1

ψ(π(I))1/a1−1 exp(nP (Ψ))
+O(1) by (5.5)

≥
∑

I∈Ln(X)

−η(I) log η(I) +
1

a1

η(I) log φ(I)+

−
∑

J∈Ln(Y )

(
1

a1

− 1)ν(I) logψ(J)− nP (Ψ) +O(1) by (5.6)

≥ nh(η) +
n

a1

Φ(η)− n(
1

a1

− 1)Ψ(ν)− nP (Ψ) +O(1) by (5.9)

= nh(η) +
n

a1

Φ(η)− n

a1

Ψ(ν)− nh(ν) +O(1) by (5.8)

= O(1) by (5.7).

This shows η � µ by Lemma 2.12. Thus η = µ since µ is ergodic.
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6 Further questions

Here are some questions based on the guiding principle (1.1). We thank Professor Feng

for some insightful discussions about these problems. Moreover, he has recommended

some references and encouraged us to the study of specific examples before the abstract

generalization.

1. Can we endow the set of subadditive potentials O(X) with some natural topology

(or infinite manifold structure) such that we can conduct the convex analysis with

respect to O(X) and Mσ(X) just like the classical thermodynamic formalism?

Note that O(X) is a subset of infinite product space. The measures on symbolic

space can also be characterized by the discretizations along the tree of cylinders.

The suggested reference for this question is [8].

2. How about combining Section 5 and Section 4? This means that can we analyze

the multifractal spectrum constructed from the pointwise Lyapunov exponent

Φ: X → [−∞,∞]

and a-weighted topological pressure

P a(Φ, ·) : 2X → R

using the weighted variational principle

sup
µ∈Mσ(X)

{Φ(µ) + ha(µ)} = P a(Φ) ?

We are told that there is some related work in [1].

3. Can we analyze a more general multifractal spectrum based on the set-valued Lya-

punov exponent

Φ: X → 2R

defined by

Φ(x) := the limit points of

{
1

n
log φn(x)

}∞
n=1

?

This is inspired by [3, Exercise 1.48].

It is suggested that some ideas can be found in Lars Olsen’s work about the diver-

gence points.

4. How about the singular value potential? What if we do the multifractal analysis

for the Lyapunov exponent defined by this one-parameter family of potential?

The recommended reference is [14].
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A Draft reflections

• In the dimension theory of iterated function system and smooth dynamics, the sub-

additive thermodynamical formalism are more useful than the classical (additive)

ones since the potentials are usually subadditive or supdadditive.

• Thermodynamic formalism and mutifractal formalism are nothing but the convex

analysis and optimization in infinite dimensional space. The corresponding dual pair

of ‘spaces’ are the set of (subadditive) potentials and the set of invariant measures.

• Thermodynamic formalism is usually about the first convex conjugate while mul-

tifractal formalism tends to focus on the double conjugates and establish some

Fenchel duality and variational principle betweens sets and measures.

• The variational principle in thermodynamic formalism says that the topological

pressure is the Legendre transform of the negative measure entropy.

• The founding fathers of the convex analysis: Hermann Minkowski; Werner Fenchel;

Jean-Jacques Moreau; Rockafellar.

• Why not compare the self-adjoint extension of unbounded operators by double

conjugates in quantum mechanics to the closure extension of convex functions by

double convex conjugates in convex analysis?

• If the potential is defined by some measure on balls, then the multifractal analysis

for Lyapunov expoents with respect to that potential becomes the multifractal

analysis of the local dimensions of that measure.

• “Ruelle’s ‘Thermodynamic Formalism’ is the book with the deepest insight in the

field of thermodynamics.” – Professor Feng.

• There are 3× 2 = 6 canonical mutifractal spectra which are {Dimension, Entropy,

Lyapunov exponent} × {Dimension, Entropy}. They are called (A,B)-multifractal

spectrum where A is a point function and B is a set function. However, there some

other spectra related in the dimension theory. For example, the Renyi spectrum

(information spectrum or Lq-spectrum), and some other interpolating dimension

spectrum (including the intermediate dimension spectrum and Assaud spectrum).

• Roughly, the multfractal rigidity says that for a dynamic system,

– The equivalence of (D,D) and (E,E) spectrum will imply the equivalence of

other spectra.

– A combination of topological equivalence and some multifractal equivalence

will imply the smooth equivalence.

• For circle homeomorphisms, no periodic point will imply the unique ergodicity.

On the other hand, the specification, which in some sense means the denseness of

periodic points, assures the uniqueness of equillibrium state, so called the instrinstic

ergodicity.
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• Is there a concept called upper weak specification which generalizes the subadditiv-

ity?

• All the topological pressures presented in standard ergodic theory textbook are

defined in box-counting way. The box-counting like topological pressures are good

enough for the dimension theory in conformal setting. However, in nonconformal or

affine settings where the Lyapunov spectrum is nontrivial (or the Oseledets splitting

is not trivial), it will be more reasonable to consider the Hausdorff-like topological

pressure.

• It seems that the measure-theoretic entropy is also defined in a box-counting way?

Can we define the measure-theoretic entropy in a Hausdorff way? After a further

thought, the process of taking supremum with respect to finite partitions has already

‘relaxed’ the ‘box-counting partition’ to ‘Hausdorff partition’. Possibly we do not

have to worry about this.

• The Riesz representation theorem transfers the measure construction into the con-

struction of continuous functionals where the Hahn-Banach theorem plays the role

of ‘nuclear weapon’. The Howroyd’s construction of Frostman measure can be

viewed as an example of the Hahn-Banach construction.

• We should not view the energy as a double integral but an iterated integral. In

such way, the energy becomes the average of potentials.

• From some perspectives, essentially we are always solving some optimization prob-

lems. The differences from the normal optimization problem is that our variables

are measures and coverings.

• In Euclidean space (or some other space with grid), we can attach the shrinking

grid dynamics to every geometric sets. However, the problem is that the scenery

we explore with respect to different zoom-in ratios can be dramatically different.

This is related to Furstenberg’s concept of dynamic disjointness.

• There are some advantages of subshifts over the general TDS.

– The alphabet is finite. Hence the topological entropy is finite.

– The shift map is expansive. Hence the measure-theoretic entropy is always

upper semi-continuous.

– The canonical metric is an ultra metric. Hence the spanning sets, separating

sets, and Bowen balls become simply the cylinders. This leads to the relatively

easier definitions of topological entropy and pressures, especially avoiding the

use of discretization constant.

– There is a natural strong generator for the Borel σ-algebra . Then we can re-

duce the measure-theoretic entropy the dynamic partition entropy with respect

to the generator.

– A combination of last two items avoids some complicated works in connecting

partitions, separating sets and coverings by Bowen balls.
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– The net (or tree) structure provides a convenient way to reduce the overlapping

of coverings, which behaves better than the Besicovitch or Vitali covering

theorems in Euclidean space.

B A growing list of history in keywords

• Thermodynamics→ Statistical Mechanics→ Dynamic system and Ergodic Theory.

• Carnot (18th c.): The father of thermodynamics; Carnot cycle.

• Clausius (19th c.): One of the central founding fathers of the science of thermo-

dynamics; (1850) first stated the basic ideas of the second law of thermodynamics;

(1865) Gave the first mathematical version of the concept of entropy, and also gave

it its name.

• Maxwell (19th c.): Maxwell’s equations; Maxwell–Boltzmann distribution...

• Boltzmann (19th c.): Boltzmann {entropy, constant, distribution, equation}, H-

theorem.

• Gibbs (19th c.): Boltzmann distributions are also called Gibbs distributions; Gibbs’

inequality; Gibbs’ H-theorem; Gibbs entropy formula; Together with James Clerk

Maxwell and Ludwig Boltzmann, Gibbs founded statistical mechanics ; Develop the

formalism of equilibrium statistical mechanics on finite phase spaces – which we

shall call thermodynamic formalism.

• Von Neumann 1932: Using the viewpoint of Koopman (so-called Koopman opera-

tor) and apply operator theory to obtain the L2 ergodic therem.

• Birkhoff 1931: Pointwise Ergodic Theorem.

• Shannon 1948: The entropy in information theory (called Shannon entropy) and

establish some properties.

• Kolmogorov-Sinai 1958: Define the measure-theoretic entropy

• Adler-Konheim-McAndrew 1965: Define the topological entropy (for compact sets)

• Sinai: Introduce the Markov partition and symbolic dynamics for Anosov diffeo-

morphism

• Furstenberg-Kesten 1960: the study of products of random matrices

• Rokhlin 1962: The theory of conditional measures

• Oseledets 1968: Multiplicative Ergodic Theorem (MET).

• Ruelle:
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– (1973) Define topological pressure. Prove the variational principle and estab-

lish the existence of equilibrium state in the setup of symbolic dynamics

– Apply the tool of Ruelle-Perron-Frobenius Operator (transfer operator).

– (1982): MET for compact operator cocycle on Hilbert space.

• Walters 1975: Extend Ruelle’s work of variational principle to continuous potential

on compact metric space.

• Parry 1964: Obtain the thermodynamics for sofic systems which includes:

– Variational principle.

– Existence and uniqueness of equilibrium state (called Parry measure).

– The Gibbs property of the equilibrium state.

• Raghunathan 1979: Prove MET in a way different from Oseledec.

• Smale:

– Poincaré conjecture in dimension ≥ 5

– Smale‘s horseshoe map: a classic motivating example in hyperbolic dynamics

– The concept of Axiom A diffeomorphism

• Bowen:

– (1973) Define the topological entropy for non-compact sets.

– (1975) Prove the uniqueness of equilibrium state under the condition of ex-

pansive map and specification.

– (1979) Bowen’s equation for Hausdorff dimension of conformal attractors or

repellers as the zero of a pressure function

– Establish the Markov partition for Axiom A diffeomorphism using shadowing

• Ornstein 1970: the complete classification of Bernoulli shift with entropy

• Pesin:

– (1976) Pesin theory for invariant manifolds: The construction of stable, center,

and unstable submanifolds in smooth dynamics

– Pesin’s formula for entropy, (cf. Ruelle-Margulis inequality)

• Mane 1981: a version of MET for compact operators on Banach space under some

continuity assumptions on the base dynamics and the dependence of the operator

on the base point.

• Misiurewicz 1976: A short(elegant) proof of the variational principle for Zd action

on compact space

• Margulis: homogeneous dynamics.
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• Furstenberg

– The tool of scenary flow

– Introduce the concept of disjointness of dynamics and give some conjectures

– The concept of dimension conservation in the relation of projected dimension

and fiber dimensions

• Froyland-Lloyd-Quas 2010: Coherent structures and isolated spectrum for Perron-

Frobenius cocycles (used in [Feng 2019]).
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