Major theorems

Theorem 1 (Main Thm AC). Let $\varepsilon > 0$ and $p \in (0,1)$. There exists a constant $c = c(p,\varepsilon) > 0$ such that for $\lambda \in \overline{Q} \cap (0,1)$, if

$$1 - \lambda < c \min\left\{\log M_{\lambda}, \frac{1}{(\log M_{\lambda})^{1+\varepsilon}}\right\},\,$$

then $\mu_{\lambda} \ll \mathcal{L}$ with $d\mu_{\lambda}/d\mathcal{L} \in L \log L$.

Theorem 2 (CEB). There exists $C = 1.2 \times 10^7$ such that: Let $\mu, \nu \in \mathcal{M}_c(\mathbb{R})$. Let $\alpha \in (0, 1/2)$ and r > 0. Suppose for all s with $|\log r - \log s| \leq 3 \log \alpha^{-1}$,

$$1 - H(\mu; s | 2s) \le \alpha \quad and \quad 1 - H(\nu; s | 2s) \le \alpha.$$

Then

$$1 - H(\mu * \nu; r | 2r) \le \frac{C}{(\log \alpha^{-1})^3} \alpha^2.$$

Theorem 3 (PHEP). Let $\alpha \in (0, 1/2)$. There exists $c_0 = \frac{1}{625 \log \alpha^{-1}}$ such that: Let $\mu, \nu \in \mathcal{M}_c(\mathbb{R})$. Let $\sigma_2 < \sigma_1 < 0$ and $0 < \beta < 1/2$. Suppose

- (a) $\mathcal{N}_1\{\sigma \in [\sigma_2, \sigma_1] : H(\mu; 2^{\sigma} | 2^{\sigma+1}) > 1 \alpha\} < c_0\beta(\sigma_1 \sigma_2).$
- (b) $H(\nu; 2^{\sigma_2} | 2^{\sigma_1}) \ge \beta(\sigma_1 \sigma_2).$

Then, by setting $c = \frac{1}{1.35 \times 10^6} \frac{\alpha}{\log \alpha^{-1}}$, we have

$$H(\mu * \nu; 2^{\sigma_2} | 2^{\sigma_1}) \ge H(\mu; 2^{\sigma_2} | 2^{\sigma_1}) + c \frac{\beta}{\log \beta^{-1}} (\sigma_1 - \sigma_2) - 3.$$

Key ingredients to Theorem 1

Proposition 4 (CEB-kHE). Let $\mu, \nu \in \mathcal{M}_c(\mathbb{R})$. Let r > 0 and k with $0 \le k \le 1 + \log^{(3)} r^{-1}$. Suppose A large enough and r = r(A, C), where C is in Theorem 2, small enough.

If μ, ν are k-HE at scale r, then $\mu * \nu$ is (k+1)-HE at scale r.

Lemma 5 (PHEP-SingleScales). Let $\alpha \in (0, 1/2)$ and $0 . There exists <math>c = (\alpha, p) > 0$ such that: for $\lambda \in \overline{Q} \cap (1/2, 1)$, suppose the (scale) $\tau = \tau(\lambda, p, \alpha)$ sufficiently small and choose (auxilliary free measure scale) $t \in (0, 1)$ with

(\$)
$$\lambda > 1 - c \frac{\min\{1, \log M_{\lambda}\} \log t}{\log^{(2)}(M_{\lambda} + 2) \log \tau}$$

(£) $t \ge \tau^{1/6}$.

Then there exists (counting) $K \ge cK_{\lambda}^{-1}\log \tau^{-1}$ and (scales) $\tau^{c/\log(M_{\lambda}+1)} > s_1 > \cdots > s_K > \tau$ such that $s_i > 2s_{i+1}$ (disjointness) and

$$H(\mu^{(t^2,t)}; s_i | 2s_i) > 1 - \alpha \quad for \ all \ i.$$